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Abstract

In this thesis, we give a geometric exposition of one dimensional regular schemes,

which we call Dedekind schemes. We develop the algebro-geometric language

needed to discuss these objects, along with some of the less elementary com-

mutative algebra required. We use completion to analyse the local invariants of

morphisms of Dedekind schemes, and show how the trace map describes the dif-

ferent and the discriminant divisors associated to such a morphism. We develop

the theory of quasicoherent sheaves on Dedekind schemes, in order to investigate

some of their global invariants, such as the Picard group, the Class group, and

their categories of coherent sheaves. We end with a treatment of curves over a

field, and a proof of the Riemann-Roch theorem using adeles and Weil differen-

tials.
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Notation

Notation

OX The structure sheaf of a locally ringed space or scheme.

OX,P The stalk of the structure sheaf OX at a point P .

FP The stalk of a sheaf F at a point P .

K(X) The fraction field of an integral scheme X, definition 2.46.

Quot(R) The fraction field of an integral domain R.

R∗ The group of units of R, when R is a ring.

V ∗ The dual vector space of V , when V is a vector space over k.

Q/P With reference to a map f : X → Y , points Q ∈ X, P ∈ Y
such that f(Q) = P .

Rp The localisation of a ring R at a prime ideal p.

M̂ I The I-adic completion of an R-module M with respect to the

ideal I ⊂ R.

Ôp
X,P The p-adic completion of OX,P , the stalk of the structure sheaf

OX at a point P .

K̂(X)
P

The field of fractions of Ôp
X,P .

AX The adele ring associated to a curve X.

Pic(X) The Picard group of invertible sheaves on X, definition 4.33.

Cl(X) The class group of X, definition 3.42.

LD The global sections of the sheaf L̃(D), definition 5.21.
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Chapter 1

Introduction

Consider the ring Z[i], and the prime ideals (2), (3) and (5) in Z. In Z[i], these

ideals decompose into products of prime ideals as follows.

(2) = (1 + i)2

(3) = (3)

(5) = (2 + i)(2− i)

When k is a field, we see similar algebraic phenomena occuring between prime

ideals of k[t] and k[x] under the following ring homomorphism.

k[t]→ k[x]

t→ x2

Now letting k = C, we may realise these polynomials as complex valued

functions on the topological space C. We also have a bijection between points of

this space C and nonzero prime ideals of C[t] given by

z ←→ (t− z).

Translating the algebraic behaviour of prime ideals along this bijection yields

an associated two sheeted ramified covering map

C→ C.

Our aim in this thesis is to convince the reader that this geometric perspective

can be applied to our first example too, and that it can be genuinely useful to do

so.

1



2 CHAPTER 1. INTRODUCTION

The algebraic phenomena of prime ideals decomposing like this occurs in a

special class of rings, Dedekind domains. To any such ring R, we will construct a

corresponding space Spec(R) which realises R as the “functions on Spec(R)”. The

geometric objects we will consider in this thesis will be spaces that locally look

Spec(R), for R a Dedekind domain. For this, we will use the modern language

of algebraic geometry, that of schemes and sheaves. This will allow for a uniform

and geometric treatment of these objects, as they are all one dimensional regular

schemes, which we call Dedekind schemes.

By treating these objects uniformly, one may clearly identify the formal ge-

ometric phenomena that result from this framework. We believe that this geo-

metric approach simplifies and illuminates many aspects of the number theoretic

situation.

In our second chapter, we will develop the language of algebraic geometry

that we will be needed to discuss these objects. We will also discuss the algebraic

properties of Dedekind domains, and introduce discrete valuations as a method

of understanding them. The reader familiar with algebraic geometry and com-

mutative algebra need only read our definition 2.56 of a Dedekind scheme and

the equivalent description of Theorem 2.62 in order to follow the later chapters.

Our third chapter concerns finite morphisms of Dedekind schemes. We will

extensively use the algebraic concepts of integrality and completion, for the lat-

ter we will provide a self contained introduction. It is in this setting that we

investigate the ramification phenomena in morphisms of Dedekind schemes. We

will also introduce the trace form associated to a finite morphism. We will show

how this trace completely controls the ramification phenomena, in terms of the

different and discriminant divisors. The reader familiar with the first third of

[Ser79] should feel comfortable with the content of this chapter.

In chapter four, we introduce the category of coherent sheaves on our Dedekind

schemes, the direct generalisation of finitely generated R modules over a ring

R. For a finite morphism of Dedekind schemes, we construct the pushforward

and pullback functors between their respective categories of coherent sheaves.

Via descent, we also construct the exceptional right adjoint to the pushforward

functor. For our Dedekind schemes, we introduce the Picard group, and prove

that it is canonically isomorphic to the class group.

We introduce the Grothendieck group of the category of coherent sheaves,

then for a Dedekind scheme X, construct the chern isomorphism

K0(Coh(X))→ Z⊕ Pic(X).
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We round out the chapter with an interpretation of the different and discrimi-

nant divisors in this framework. This chapter is undoubtedly the most technical,

though it should be reasonably easy reading for the reader well acquainted with

quasicoherent sheaves.

Finally, in chapter five we consider complete nonsingular curves over fields,

and enjoy the bountiful structure given by the presence of a base field. After prov-

ing the equivalence with function fields, we introduce the ring of adeles associated

to a curve. Taking this adelic approach allows for a rapid proof of the Riemann-

Roch Theorem for algebraic curves over arbitrary base field. As a corollary, we

obtain the Riemann-Hurwitz formula for separable finite morphisms of curves.

We finish the chapter by illustrating the relation between Weil differentials, and

regular differentials on a curve.

None of the results or ideas in this thesis are new. This thesis owes the largest

share of intellectual debt to Dino Lorenzini’s fantastic book, “An Introduction

to Arithmetic Geometry”[Lor96]. Serre’s books [Ser79], and [Ser88] also played

a significant role in the author’s understanding of this material. We also owe a

significant debt to [Har77], in which most of the proofs of unproven statements

may be found. Our proof of the Riemann Roch Theorem is essentially due to

Andre Weil [Wei74], building on [Sch31].

We will take basic category theory as assumed knowledge, along with a basic

understanding of commutative algebra and topology. The reader familiar with the

first half of Maclane’s text [Mac98] and Atiyah and Macdonald’s classic [AM69]

should be well equipped to read this thesis.





Chapter 2

Sheaves and schemes

2.1 Sheaves

For a topological space X, we define Op(X) to be the partially ordered set of

open subsets of X, viewed as a category. We will use this category as an index

set for the data we will associate to X.

Definition 2.1 (Presheaves). Let C be a category. A C valued presheaf F on X

is a functor F : Op(X)op → C. These form a category PShC(X), with morphisms

natural transformations of functors.

Explicitly, this is is an assignment of an object F(U) of C to each open set of

X, along with compatible restriction maps rUV : F(U)→ F(V ), for each inclusion

of open sets V ⊂ U .

This is a way to organise data on X, but we want presheaves of a special form,

which allow us to glue local data into global data.

Definition 2.2 (Sheaves). Let C be a category with finite limits. A C valued

sheaf on X is a C valued presheaf F such that if {Ui}i∈I is an open cover of U

open in X, then the following diagram is an equaliser.

F(U)→
∏
i

F(Ui) ⇒
∏
i,j

F(Ui ∩ Uj)

The double arrows are the products of the restriction maps associated to

Ui ∩ Uj ⊂ Ui and Ui ∩ Uj ⊂ Uj.

The category ShC(X) of C valued sheaves is the full subcategory of PShC(X)

with objects the C valued sheaves on X.

5



6 CHAPTER 2. SHEAVES AND SCHEMES

When the category C is clear from context, we will drop the reference to it,

and refer to these categories as Sh(X) and PSh(X).

A presheaf F on X is an assignment of compatible local data to each open

subset of X, and the sheaf condition gives a “patching” property, we may patch

together compatible local data along a cover of U to get a unique piece of data

defined on U .

Example 2.3 (Continuous functions). For a topological space X, we can upgrade

the ring of continuous real valued functions C[X,R] into a sheaf CX in a natural

way, by setting CX(U) = C[U,R], with the restriction maps given by restriction

of functions.

To see that this is a sheaf, we just need to check that if we have {fi}i∈I a

family of continuous functions defined on {Ui}i∈I an open cover of U , such that

fi|Uj∩Ui
= fj|Uj∩Ui

, then there is a unique function f on U that restricts to fi on

each Ui. For this, we define f(x) = fi(x) for x ∈ Ui, and our conditions give that

this function is continuous, restricts to each fj on Uj, and is clearly unique.

This is in fact a sheaf of rings, and this prototypical example should be kept

in mind for the sheaves of rings we will be encountering throughout this thesis.

Example 2.4 (Sheaves of sections). Another more geometric example is that of

sections of a map of topological spaces f : X → Y . This is a sheaf of sets Sf on

Y , with value on an open set U given by the sections of f over U .

Sf (U) = {g : U → X|f ◦ g = idU}.

The restriction maps are given by restriction of sections, and one can check that

sections satisfy the sheaf condition, by a similar argument to the previous exam-

ple.

Remark 2.5. We may recognise our first example as being the sheaf of sections

of the projection X × R π−→ X.

For an arbitrary sheaf F with values in a concrete category C, we will refer to

the elements of F(U) as sections over U , and sections over X as global sections.

Given a map of topological spaces f : X → Y , we have two primary functors

between their categories of presheaves, the direct image and the inverse image.

Definition 2.6 (Pushforward). For a presheaf F on X, define the pushforward

f∗F of F by f∗F(U) = F(f−1(U)), with the restriction maps coming from F
over X. This defines a functor f∗ : PSh(X)→ PSh(Y ), and one may easily verify

that this preserves the full subcategories of sheaves on X and Y .
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Example 2.7. For the terminal one point space •, we may recognise the push-

forward of F along the terminal map t : X → • as a sheaf over •, the data of

which is just an object of C. This object is given by t∗F(•) = F(t−1(•)) = F(X),

which are just the global sections of F .

Definition 2.8 (Inverse image). For a presheaf F on Y , we define the inverse

image presheaf f−1F to have sections f−1F(U) = colimf(U)⊂V F(V ), with re-

striction maps induced from this colimit. This assignment on objects, along with

the induced maps on morphisms yields a functor f−1 : PSh(Y )→ PSh(X).

Remark 2.9. The inverse image of a sheaf need not be a sheaf in general. Two

points mapping to one gives a counterexample, for any nonempty sheaf on the

one point space.

We may describe two fundamental operations on sheaves in terms of the pull-

back functor, associated with natural maps into X. The first of these is the

pullback associated to an open set inclusion:

Definition 2.10 (Restriction of a sheaf). Given an open inclusion U
i−→ X,

we define the restriction of F along U as F|U := i−1F . Concretely, we have

F|U(V ) = F(V ) for V ⊂ U .

The second is the pullback associated to the inclusion of a point x
ix−→ X.

Definition 2.11 (Stalk of a sheaf). Given a C sheaf F on a topological space

X, the stalk of F at x is the C object Fx := i−1
x F({x}) = colimx∈U F(U).

The stalk of F at a point x can be thought of as detecting the behaviour of

sections of F in an “arbitrarily small” neighbourhood of the point x. Given a map

F → G of sheaves over X, we get a naturally induced map on stalks Fx → Gx.

Theorem 2.12. For a continuous map f : X → Y of topological spaces, the

functor f−1 is a left adjoint of f∗.

PSh(Y ) PSh(X)
f−1

f∗

Proof. We have natural transformations εF : f−1f∗F → F given by the canonical

map induced from the the compatible family of restriction maps

colimf(U)⊂V f∗F(V ) = colimf(U)⊂V F(f−1(V ))→ F(U).
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Since f(f−1(U)) ⊂ U for all U , we have a natural transformation ηG : G → f∗f
−1G

given by the canonical map

G(U)→ colimf(f−1(U))⊂K G(K).

These are the counit and unit of the adjunction. So we need to verify that

f∗(εG) ◦ ηf∗G = idf∗G and εf−1F ◦ f−1(ηF) = idf−1F .

This is to say, the following composites are identities.

G(f−1(U)) colimf(f−1(U))⊂K G(f−1(K))

G(f−1(U))

colimf(U)⊂V F(V ) colimf(U)⊂V colimf(f−1(V ))⊂K F(K)

colimf(U)⊂V F(V )

For the first of these, note that f−1(U) = f−1(f(f−1(U))) ⊂ f−1(K). The

compatible family of maps given by restriction from f−1(K) induces the vertical

map, so the first dashed arrow is the identity, being the restriction map from

G(f−1(U)) to G(f−1(U)).

The second map is similar, since f(U) ⊂ V , and f(f−1(V )) ⊂ K, so we have

f(U) = f(f−1(f(U))) ⊂ f(f−1(V )) ⊂ K.

The canonical maps from F(V ) to colimf(U)⊂V F(V ) factor through this double

colimit, and the unique induced map is therefore the identity.

Now that we know what sheaves are, we should see how to construct them.

Our first method of constructing sheaves is to canonically build a sheaf out of a

presheaf.

Construction 2.13 (Sheafification). Let F be a C presheaf on X, where C is a

concrete category. If s ∈ F(U), and x ∈ U we denote the image of s in the stalk

at x by s|x. We define the sheafification Sh(F) of F to be the sheaf on X with

sections over U given by

ShF(U) =

{
(sx)x∈U ∈

∏
x∈X

Fx

∣∣∣∣∣ ∀x ∈ U, there exists U ⊃ V 3 x and s ∈ F(V ),

such that s|y = sy for all y ∈ V.

}
.
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With restriction maps the projections
∏

x∈U Fx →
∏

x∈V Fx. It is straight-

forward to check that this gives a sheaf on X, and by taking the product of the

passage to stalk maps s→
∏

x∈U s|x, we obtain a map F sh−→ ShF .

We may interpret this map F sh−→ ShF as a two step process of turning a

presheaf into a sheaf. First, we force the sections of ShF to be determined by

their values on stalks, by viewing a section as nothing more than its stalkwise

values. Since this need not hold for sections of an arbitrary presheaf, but all

sheaves do have this property, we can liken this step to throwing out the “bad”

sections of F . Then, we require compatible families of local data to glue, so we

just include all the families of local data from F that are compatibly defined on

an open cover {Ui}i∈I of U .

Theorem 2.14. The inclusion ι of the full subcategory Sh(X) into PSh(X) ad-

mits a left adjoint, the sheafification functor.

PSh(X) Sh(X)
Sh

ι

Proof. Let F be a presheaf, and G a sheaf on X. We need to check that for any

morphism F φ−→ G that there exists a unique morphism ShF φ̃−→ G such that the

following diagram commutes.

F G

ShF

φ

sh
φ̃

To define this map φ̃, express any section s ∈ ShF(U) as a compatible family

of sections si ∈ F(Ui) on an open cover of {Ui}i∈I of U , and map s to the

unique element of G(U) corresponding to the compatible family φ(si) ∈ G(Ui).

This is independent of the si and Ui used to represent s, since it is stable under

refinement, as G is a sheaf.

Presheaves are a much more robust objects than sheaves, any functor from

C to D results in a method of producing D valued presheaves from C valued

presheaves. By sheafifying, we may extend this to sheaves, giving us a way of

constructing new sheaves from old.

As an instance of this, we may now extend our inverse image functor to the

categories of sheaves.

Corollary 2.15. For a continuous map of spaces f : X → Y , the pushforward

functor of sheaves admits a left adjoint Sh ◦f−1.
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Sh(Y ) Sh(X)
Sh ◦f−1

f∗

Proof. Adjunctions are closed under composition, so this follows from Theorems

2.12 and 2.14.

From here, we will let f−1 denote the adjoint of f∗ on the sheaf categories,

letting the sheafification be implied. We will be working primarily with categories

of sheaves, so this distinction will hopefully not cause confusion. All of our data

categories C will now be taken to be concrete, so we will speak of sections of F
over U as elements of sets.

Sheafification is a global process, and thus it is reassuring that the “local

information” of a presheaf is preserved.

Proposition 2.16. The canonical map F sh−→ Sh(F) induces an isomorphism

Fx ∼= Sh(F)x on stalks.

Proof. Sheafification is a left adjoint, so preserves the colimit used to define Fx.

We will repeatedly use the following corollaries of the sheafification construc-

tion.

Corollary 2.17. A section of F over U is determined by its value on stalks Fx
for x ∈ U .

Proof. The sections of Sh(F) over U are naturally a subset of
∏

p∈U Fp, so for a

sheaf, since Sh(F) ∼= F , we have that the canonical map F(U)→
∏

p∈U Fp is an

injection.

Corollary 2.18. If F is a presheaf on X, such that F|U is a sheaf on U open in

X, then (ShF)|U ∼= F|U .

Proof. The sheafification of F on U depends only on the stalks at points in U ,

with a condition that can be checked locally in U . Thus, the sheafification on U

is dependent only on F|U , giving the claim.

This corollary leads into our other construction of sheaves. Given a family of

sheaves Fi defined on an open cover {Ui}i∈I of X, we may “glue” them to define

a sheaf on X.
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Proposition 2.19. Let Fi be sheaves on U = {Ui}i∈I an open cover of X, with

isomorphisms

γi,j : Fi|Ui∩Uj
→ Fj|Ui∩Uj

as sheaves on Ui∩Uj, such that γj,k ◦γi,j = γi,k on Ui∩Uj ∩Uk. Then there exists

a unique sheaf F on X such that F|Ui
∼= Fi, unique up to isomorphism.

Proof. We define F(U) to be the equaliser

F(U)→
∏
i

Fi(U ∩ Ui) ⇒
∏
k,j

Fk(U ∩ Uk ∩ Uj).

Here the (k, j) component of the first of the double arrows is given by is projecting

onto the kth coordinate, then restricting onto U ∩Uk ∩Uj. The (k, j) component

of the second map is given by projecting onto the jth component, restricting onto

U ∩ Uj ∩ Uk, then applying the isomorphism γj,k.

To check that this is a sheaf with the desired properties, let {Vm}m∈J be an

open cover of V in X, and consider the following diagram:

F(V )
∏
i

Fi(V ∩ Ui)
∏
k,j

Fk(V ∩ Uk ∩ Uj)

∏
n

F(Vn)
∏
n

∏
i

Fi(Vn ∩ Ui)
∏
n

∏
k,j

Fk(Vn ∩ Uk ∩ Uj)

∏
n,m

F(Vn ∩ Vm)
∏
n,m

∏
i

Fi(Vn ∩ Vm ∩ Ui)
∏
n,m

∏
k,j

Fk(Vn ∩ Vn ∩ Uk ∩ Uj)

To show that this F is a sheaf, we need the far left vertical fork to be an

equaliser diagram. For this, observe that every other fork in the diagram is an

equaliser, either by definition, or since it is a product of equalisers. From this,

it is an enjoyable diagram chase to show that the left fork is also an equaliser,

which we leave to the reader.

The reader may note that we haven’t yet used the compatibility conditions

on our γi,j. We will need them now to check that the restriction of F to U` is

isomorphic to F`.
For this, we have the following natural diagram for any V ⊂ U`:

F`(V )
∏

iF`(V ∩ Ui)
∏

j,k F`(V ∩ Uj ∩ Uk)

F(V )
∏

iFi(V ∩ Ui)
∏

j,k Fk(V ∩ Uj ∩ Uk)

∏
i γ`,i

∏
k γ`,k
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Our compatibility condition on the γi,j ensures that this diagram commutes,

so since the vertical maps are natural isomorphisms, we see that F` ∼= F|U`
.

To express this construction more categorically, fix an open cover U = {Ui}i∈I
of a space X.

Definition 2.20. The category of sheaves on U with descent data, denoted

ShU(X) has objects (Fi, γi,j)i,j∈I , where Fi is a sheaf on Ui, with isomorphisms

γi,j : Fi|Ui∩Uj
→ Fj|Ui∩Uj

as sheaves on Ui ∩ Uj, such that γj,k ◦ γi,j = γi,k on Ui ∩ Uj ∩ Uk. A morphism in

this category

(Fi, γi,j)→ (Gi, τi,j)

is a family of morphisms φi : Fi → Gi such that that following diagram commutes

for all i.

Fi|Ui∩Uj
Gi|Ui∩Uj

Fj|Ui∩Uj
Gj|Ui∩Uj

φi|Ui∩Uj

γi,j τi,j

φj |Ui∩Uj

We have a natural functor from Sh(X) to ShU(X) given by taking F to its

restrictions F|Ui
, along with the canonical maps induced by the equalities

(F|Ui
)|Uj

(V ) = (F|Uj
)|Ui

(V ).

Without much difficulty, we may upgrade Proposition 2.19 into the following

equivalence of categories.

Theorem 2.21. The natural functor Sh(X) → ShUi
(X) is an equivalence of

categories.

We will only use this theorem explicitly in chapter 4, but implicitly this view-

point on sheaves will be present throughout this thesis.

2.2 Affine schemes

We want to think of spaces and their “functions” together, so our algebra-

geometric objects will be pairs, (X,OX) consisting of a space X, and a sheaf

of rings on that space, which we will think of as the functions on X.

First, we need to recall the definition of a local ring from commutative algebra.
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Definition 2.22 (Local ring). A ring R is local if it has a unique maximal ideal

m, and a morphism of local rings φ : (R,m) → (S, n) is a local morphism if

φ(m) ⊂ n.

Definition 2.23 (Locally ringed space). A locally ringed space is a pair (X,OX)

of a topological space X, with a sheaf of rings OX on X, such that for each point

x of X, the stalk OX,x is a local ring. The sheaf of rings OX is called the structure

sheaf of X.

Example 2.24. The sheaf of continous functions endows (X,CX) with the struc-

ture of a locally ringed space. We already saw that this is a sheaf of rings, so

it remains to check that the stalks are local rings. The stalk at a point x ∈ X
consists of functions f defined in a neighbourhood of x, where we identify f and

g if they agree on a potentially smaller neighbourhood of x. The functions that

vanish at x are the kernel of the evaluation at x map (CX)x
evx−−→ R, and thus

form a maximal ideal of (CX)x. To check that (CX)x is a local ring, note that if

a function f doesn’t vanish at x, then it doesn’t vanish in a neighbourhood of x,

so it is invertible in a neighbourhood of x.

Given that any continous map f : X → Y induces a pullback on continous

functions, we can interpret this situation to give the definition of a morphism of

locally ringed spaces.

Definition 2.25 (Morphism of locally ringed spaces). A morphism of locally

ringed spaces (f, f×) : (X,OX) → (Y,OY ) consists of the data of a continuous

map f : X → Y , and a morphism of sheaves of rings f× : OY → f∗OX , such

that the induced maps OY,f(P ) → (f∗OX)f(P ) → OX,P on stalks are local ring

homomorphisms.

When the map on structure sheaves is clear from context, by abuse of notation,

we refer to morphisms of locally ringed spaces by their map of underlying spaces.

Given an open set U ⊂ X, we may restrict the structure sheaf of X to endow

U with the structure of a locally ringed space.

Proposition 2.26. For an open subset U of X, the pair (U,OX |U) is a locally

ringed space.

Proof. The sheaf OX |U is a sheaf of rings, and since we may compute stalks locally

in U , we see that (U,OX |U) is a locally ringed space.
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The notion of a locally ringed space gives a generalisation of how functions

defined on a space behave. We have rings of “functions”, defined on open subsets

of a space, and those rings have “values” at points by interpreting the canonical

map OX,P → OX,P/m as the “evaluation at x” map.

We aim now to construct, for any ring R, a locally ringed space Spec(R) for

which R is “the functions on Spec(R)”. Let Rp denote the localisation of R at

a prime ideal p, for a refresher on localisation, see [AM69]. We would like to

interpret the local ring Rp as the germs of functions at a point, with Rp → Rp/p

the “evaluation at p” map, so the points of our space ought to be prime ideals of

R.

To topologise the set of prime ideals, we need to specify which sets are open

and closed. Since our “evaluation” maps Rp → Rp/p land in different fields, we

cannot rely on properties of any specific field. However, we may note that while

the “values” of f at the different primes may not be comparable, the notion of

“vanishing at p” is well defined. We may take f vanishing at p to mean the coset

f̄ in Rp/p is zero, or more simply, that f ∈ p.

So if we want these vanishing sets to be closed, we should have the sets

Zf := {p ∈ Spec(R)|f ∈ p}

closed in Spec(R).

Definition 2.27. The topological space Spec(R) is the set of prime ideals of R,

with the topology generated by the closed sets Zf .

This topology is called the Zariski topology, and we have the following explicit

description of it.

Lemma 2.28. The Zariski topology on Spec(R) has closed sets

ZI = {p ∈ Spec(R)|I ⊂ p}

where I is an arbitrary ideal of R.

Proof. First, note that ZI =
⋂
f∈I Zf , since a prime ideal p contains I if and

only if it contains all the elements of I, that is, p ∈ Zf . So it suffices to check

that these closed sets form a topology. This follows by verifying these simple

properties of ZI .

i) ZI ∪ ZJ = ZI∩J
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ii)
⋂
j ZIj = Z∑

j Ij

iii) Z(0) = Spec(R)

iv) Z(1) = ∅

Lemma 2.28 shows that Df := Spec(R) \ Zf are a basis for the topology on

Spec(R). We call open subsets of this form distinguished open subsets of Spec(R).

Similarly, we define the open sets DI by

DI := Spec(R) \ ZI .

So for this space, we would like to interpret R as the global sections of a

sheaf of rings OR on Spec(R). To determine this structure sheaf for other open

subsets, we should observe the fact that in topology, a real valued continuous

function f on an open set U is invertible if it doesn’t vanish on any point in U .

This is a perfectly well behaved algebraic notion too, so as a first attempt, we

may construct the “functions on DI” by taking R, and inverting those f ∈ R

which have Zf contained in ZI .

Algebraically, this is setting

ÕR(DI) := R[f−1
i ]

for all fi such that Zf ∈ ZI .
Interpreting the natural maps ÕR(DI) → ÕR(DJ) as restriction maps, we

arrive at a presheaf ÕR on Spec(R). Unfortunately, this is not a sheaf in general,

so we then sheafify ÕR to obtain a sheaf of rings OR.

Proposition 2.29. The pair (Spec(R), OR) is a locally ringed space.

Proof. We have a topological space and a sheaf of rings, so we just need to check

that the stalks of OR are local rings. Since sheafification preserves stalks, it

suffices to check that the stalks of ÕR are local rings. We would like the stalk at

p to be the local ring Rp. For this, we have

(OR)p := colimp∈DI
ÕR(DI) = colimp∈DI

colimZf⊂ZI
R[f−1]

We may rewrite this last colimit as the colimit of R[f−1] over all f such that

there exists an ideal I not contained in p, such that Zf ⊂ ZI . We claim that

this condition is satisfied if and only if f is not contained in p. The if direction
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is clear, take I = (f). For the converse, if Zf ⊂ ZI , then since
√

(f) =
⋂

(f)⊂p p,

we have I ⊂
√

(f), so if I is not contained in a given prime ideal q, then neither

is f .

Thus, this last colimit is exactly Rp.

Now that we have our locally ringed space (Spec(R), OR), it remains to prove

our original desired property, that the global sections of OR are precisely R.

Theorem 2.30. The global sections of (Spec(R), OR) can be canonically identified

with R.

Proof. Now from 2.29 we know the stalks of OR, and we have that Df are a basis

of our topology, we may describe the sections of OR explicitly as

OR(U) =

{
(xp ∈ Rp)p∈U

∣∣∣∣∣ for all p ∈ U, there exists f ∈ R, g ∈ R[1/f ]

with p ∈ Df , such that xq = g|q for all q ∈ Df .

}
.

That is, the sections over U are families of elements in each Rp, compatible

in the sense that they look like restrictions of functions defined on our base of

distinguished subsets Df .

Let’s now check that the only global sections of OR are the “obvious” ones,

coming from elements of ÕR(Spec(R)) ∼= R.

First, let’s note that R injects into the global sections of OR. If f ∈ R is in

the kernel of this map, then f is zero in Rp for all p ∈ Spec(R). Thus we have, for

each prime ideal pi, an element si, with si /∈ pi and sif = 0. The ideal generated

by these si is not contained in any prime ideal, so is the unit ideal, so we have

n∑
i=1

aisi = 1

for some ai ∈ R. Multiplying both sides by f yields that f = 0.

For surjectivity, if we have a global section s, then from our description of

OR, we have an open cover {Dfi}i∈I , and elements gi ∈ R[1/fi] such that

s = gi on Dfi , with gi = gj on Dfifj

. Since the Dfi are an open cover of Spec(R), the ideal generated by the fi is the

unit ideal, so we have a finite R-linear combination of them that sum to 1 ∈ R.

Thus, we may assume that our index set I is finite.

Each gi can be expressed as ai
f
ni
i

, and by changing our representative of gi, we

may assume all ni = N = maxi∈I{ni}, so we may express gi as

gi =
bi
fNi

.
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Our compatibility condition gives the existence of Kij ∈ N with

(fifj)
Kij(bif

N
j − bjfNi ) = 0.

Now set K := maxi,j∈I(Kij), and note that since our fi generate the unit ideal,

there exist ci ∈ R such that

n∑
i=1

cif
N+K
i = 1.

Then set d :=
∑n

i=1 cif
K
i bi. By construction, we have

fN+K
j d = fN+K

j

n∑
i=1

cif
K
i bi =

n∑
i=1

cif
K
i f

N+K
j bi =

n∑
i=1

cif
N+K
i fKj bj = fKj bj.

So for each j ∈ I, on Dj we have

gj =
bj
fNj

= d.

So d = s, and the global sections are precisely R.

Applying this argument to each Df gives that

OR(Df ) = R[1/f ].

Since these form a base of the topology, we see that the sections on an arbitrary

U are just compatible families of elements in R[1/fi] as for {Dfi}i∈I a cover of U .

Remark 2.31. We could have given the Zariski topology and the explicit descrip-

tion of the structure sheaf directly to construct (Spec(R), OR), but we opted for

the more roundabout approach for its intuitive appeal and perceived pedagogical

value.

Given a ring homomorphism R
φ×−→ S, the preimage of a prime ideal is prime,

so we have an induced map Spec(S)
φ−→ Spec(R) of topological spaces. This

is easily seen to be continuous since φ−1(Zf ) = Zφ×(f). By localising, we may

upgrade the map R
φ×−→ S to a map of structure sheaves OR → φ∗OS.

The construction Spec is therefore functorial, and yields a functor

Spec : Ringop → Locally ringed spaces.
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From this perspective, we see that the canonical morphism R→ R[ 1
f
] inverting

an element f ∈ R corresponds to restricting (Spec(R), OR) to the sub-locally

ringed space (Df , OR|Df
).

Regarding this functor, we have the following result, a proof of which can be

found as proposition 2.2.3 of [Har77].

Theorem 2.32. The functor Spec is fully faithful, so yields an equivalence of

categories between Ringop and its essential image in the category of locally ringed

spaces.

So we can intepret the category Ringop as naturally living inside the category

of locally ringed spaces.

Definition 2.33 (Affine schemes). An affine scheme is a locally ringed space

isomorphic to (Spec(R), OR) for some ring R.

Via this equivalence, we may attach geometric meaning to properties and

phenomena in the category of rings. The most important of these is the definition

of a closed subscheme, the dual notion to a surjective map of rings.

Definition 2.34 (Closed subscheme of an affine scheme). A closed subscheme

of Spec(R) is a sub locally ringed space Z ⊂ Spec(R) corresponding to Spec

of a surjection of the form R → R/I. A closed immersion X → Spec(R) is a

morphism of locally ringed spaces that factors as an isomorphism, followed by

the inclusion of a closed subscheme.

From Theorem 2.32 we have a order reversing bijection from ideals of R to

closed subschemes of Spec(R).

Note that closed subschemes of affine schemes are themselves affine schemes,

since they are isomorphic to Spec(R/I). On the underlying spaces, a closed

subscheme inclusion is given by a closed subset inclusion.

Remark 2.35. Closed subschemes are very different from topological closed set

inclusions however. For instance, a nontrivial field extension induces a homeomor-

phism on the underlying topological spaces, but is not a closed immersion. The

closed subscheme inclusions Spec(R/I) → Spec(R) and Spec(R/I2) → Spec(R)

are potentially distinct also, but give the same underlying closed subset inclusion.

2.3 Schemes

Our geometric objects of interest will be modelled on spaces of the form Spec(R).
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Definition 2.36 (Schemes). A scheme is a locally ringed space that is locally

isomorphic to an affine scheme, that is, admits an open cover {Ui}i∈I such that

(Ui, OX |Ui
) are affine schemes.

For a scheme (X,OX), we denote the stalk at a point x by OX,x.

Example 2.37. Any affine scheme (Spec(R), OR) is a scheme, taking the open

cover to consist of Spec(R) itself.

Example 2.38. Less trivially, for any affine scheme (X,OX) the sub-locally

ringed space (U,OX |U) is a scheme. This follows from 2.30, since each (Df , OX |Df
) ∼=

(Spec(R[ 1
f
]), OR[ 1

f
]). Schemes of this type need not be affine when U is DI for a

nonprincipal ideal I of R.

We call a sub-locally ringed space of the form (U,OX |U) an open subscheme

of (X,OX).

Definition 2.39 (Closed immersion of schemes). A closed immersion of schemes

is a morphism i : Z → X such that each i : Z|f−1(U) → U is a closed immersion

for U affine in X. Similarly, a closed subscheme of X is closed immersion which

is the inclusion of a closed subscheme on each affine U .

Since schemes are locally affine, and affine schemes are dual to rings, many

properties of rings translate to this global setting. For us, all of our schemes will

have these properties, to avoid some complications and pathologies.

Definition 2.40 (Reduced schemes). A scheme X is reduced if the rings OX(U)

all have trivial nilradical.

Definition 2.41 (Irreducible schemes). A scheme X is irreducible if its underly-

ing topological space is irreducible, that is, cannot be expressed as the union of

two proper closed sets.

Definition 2.42 (Integral schemes). A scheme X is integral if it is both reduced

and irreducible.

Definition 2.43 (Noetherian schemes). A scheme X is Noetherian if every de-

scending chain of closed subsets stabilises.

Note that if a scheme X has these properties, then any open affine U in X

is dense, and also has these properties. Furthermore, in the affine case, Spec(R)

having these properties is equivalent to R being a Noetherian integral domain.

The next ring theoretic construction we wish to globalise is the field of frac-

tions associated to an integral domain.
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Proposition 2.44. For any integral scheme X, there is a unique point such that

its closure is X, and this point is the intersection of all open sets of X.

Proof. Let U be an open affine subscheme of X, and gU the point of U corre-

sponding to the zero ideal in OU(U). Since the closure of gU contains U , and X

is irreducible, we have that the closure of gU is all of X.

For uniqueness, first note that there is a unique point with this property in

any affine subscheme Spec(A), which corresponds to the unique minimal ideal of

A

(0) =
⋂

p∈Spec(A)

p.

Now, given another point x, with the closure of x being X, x cannot be contained

in X \ U , so x ∈ U , giving x = gU .

If y is any point contained in every open subset of X, then its closure is a

closed set which has nonempty intersection with every nonempty open subset of

X, so must be all of X.

Definition 2.45. The generic point of an integral scheme X is defined to be the

unique point xgen such that the closure of xgen is X.

Definition 2.46 (Field of fractions). The field of fractions K(X) of an integral

scheme X is the stalk of OX at xgen.

As the name would suggest, the field of fractions K(X) is a field. The inclusion

of an open affine U → X induces an isomorphism on the stalks at points in U , so

OXxgen
∼= Quot(OU(U)).

2.4 Dedekind domains

Our schemes will be built out of particularly well behaved rings, Dedekind do-

mains.

Definition 2.47 (Dedekind domain). A Dedekind domain is an integral domain

A which is Noetherian, has Krull dimension one, and integrally closed in its field

of fractions.

We will be using Dedekind domains extensively, and we refer the reader to

chapter 9 of [AM69] for a proof of the following equivalences.

Theorem 2.48. The following are equivalent for a domain A:
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i) A is integrally closed in its field of fractions, Noetherian, and has Krull

dimension 1.

ii) Every nonzero ideal I in A can be expressed uniquely up to reordering of

factors as a finite product of powers of prime ideals, I =
∏n

i=1 P
ei.

iii) A is Noetherian, and the localisation Ap is a principal ideal domain for all

nonzero prime ideals p.

To understand the local rings Ap for A a Dedekind domain, we will use discrete

valuations.

Definition 2.49 (Discrete valuation on a ring). A discrete valuation v on a ring

R is a map v : R→ Z ∪ {−∞} such that:

i) v(ab) = v(a) + v(b)

ii) v(a+ b) ≥ min(v(a), v(b))

iii) v(x) = −∞ if and only if x = 0

Since we will not being dealing with valuations that are not discrete in this

thesis, we will often refer to discrete valuations simply as valuations. Associated

to any discrete valuation v, we have an associated ring.

Definition 2.50. The subring Ov associated to a discrete valuation v on R is

the subring defined by

Ov = {x ∈ R|v(x) ≥ 0}.

Within this subring, we have a distinguished prime ideal m given by

m = {x ∈ R|v(x) > 0}.

We say that two discrete valuations v, w are equivalent, denoted v ∼ w, if

w(x) = q · v(x) for some q ∈ Q, for all x ∈ R. The connection to Dedekind

domains is given by the following proposition.

Proposition 2.51. A local principal ideal domain (A,m) has a canonical valua-

tion v defined by (x) = mvm(x). If K is a field with a nonzero valuation v, then Ov

is a local principal ideal domain, and the the associated valuation is equivalent to

v.
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Proof. The fact that vm is a valuation is easily verified from the properties of

Dedekind domains given by Theorem 2.48. For the second claim, pick an element

π of Ov such that v(π) is positive and minimal, with v(π) = k. By property i) of

definition 2.49, and minimality, we see that any element x ∈ Ov has v(x) divisible

by k, so we may normalise v to have v(π) = 1. So now if x has v(x) = n, then

v(xπ−n) = 0, so xπ−n is a unit in Ov, so every element x ∈ Ov is of the form πnu

for u a unit in Ov, so Ov is a local principal ideal domain.

Definition 2.52 (Discrete valuation ring). We define a discrete valuation ring to

be a local principal ideal domain. We see from Proposition 2.51 that any discrete

valuation ring comes with a canonical valuation, which we denote by v.

We have seen that elements of valuation equal to 1 play a special role in the

theory of discrete valuation rings, in that they generate the maximal ideal m.

Definition 2.53 (Uniformising parameter). For a discrete valuation ring R, a

uniformising parameter, or uniformiser of R is an element π of R with v(π) = 1.

Equivalently, a generator of the maximal ideal of R.

Throughout this thesis, we will use π to denote a uniformising parameter of

a discrete valuation ring.

Finally, observe that if R is a discrete valuation ring inside its field of fractions

K, then every proper nonzero R submodule of R is free of rank one, generated

by πn for some n ∈ N. For p the maximal ideal of R, we will write pn to mean

the submodule of K generated by πn for n ∈ Z. Note we allow n to be negative,

so this need not be an ideal of R.

2.5 Dedekind schemes

We need one more general property of schemes before defining our schemes of

interest, that of seperating points.

Definition 2.54 (Seperating points). An integral scheme (X,OX) is said to

seperate points if for all x, y ∈ X, there exists f ∈ K(X) with

f ∈ mx ⊂ OX,x ⊂ K(X) and f /∈ my ⊂ OX,y.

Remark 2.55. This definition is non-standard, and suffices for our one dimen-

sional purposes. On the schemes we will be considering, this can be shown to

be equivalent to X being seperated over Spec(Z) using the valuative criterion for

seperatedness, Theorem 4.3 in [Har77].
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Now we come to the definition of the objects we will be principally interested

in, schemes built out of the spectra of Dedekind domains.

Definition 2.56 (Dedekind schemes). A Dedekind scheme is a Noetherian inte-

gral scheme X that seperates points, such that X admits an open cover of affine

schemes {Ui}i∈I , such that

(Ui, OX |Ui
) ∼= (Spec(Ai), OAi

)

where each Ai is a Dedekind domain.

These schemes will have a more palatable topology than arbitrary schemes,

their proper closed subsets are the finite subsets of closed points of X.

Proposition 2.57. For X a Dedekind scheme, the underlying topological space

of X has nontrivial closed sets precisely the finite unions of closed points.

Proof. We know X has an affine open cover {Ui}i∈I , and we have a descending

chain of closed subschemes
k⋂
i=1

X \ Ui.

By the Noetherian property, we have that X is covered by finitely many Ui. From

characterisation ii) of Theorem 2.48 , on each affine subscheme Ui we see that

the nontrivial closed sets are finite unions of closed points.

We also have that open subschemes of Dedekind schemes are Dedekind schemes.

Proposition 2.58. For U an open subset of X a Dedekind scheme, the scheme

(U,OX |U) is a Dedekind scheme.

Proof. First, we show that a nonempty distinguished open subset of an affine

Dedekind scheme is an affine Dedekind scheme. This translates to the statement

that for R a Dedekind domain, R[1/f ] is also a Dedekind domain. This ring is

Noetherian, and integrally closed, so we just need to check that it is one dimen-

sional. For this, we have that R is a domain that isn’t a field, so has infinitely

many prime ideals, since f is contained in finitely many prime ideals, we have

that R[1/f ] is also one dimensional.

So now an arbitrary open subscheme of a Dedekind scheme is a union of

distinguished opens on an affine cover, so it is a Dedekind scheme.
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The fact that Dedekind schemes are one dimensional allows the closed points

of X to see more information about X than closed points do for arbirary schemes,

and allows for a more “point centric” viewpoint. The next definition is a mani-

festation of this, we can study X using valuations on its field of fractions K(X).

Proposition 2.59. For any closed point P ∈ X, the stalk OX,P is a discrete val-

uation ring, and the discrete valuation vP on OX,P extends to a discrete valuation

on K(X) by vP (a/b) = vP (a) − vP (b). The subring associated to vP in K(X) is

precisely OX,P .

Proof. The stalk at P can be calculated with reference to an affine U containing

P . Letting U be isomorphic to Spec(A) for A a Dedekind domain, the claim

follows at once, since it holds in the affine case, and Quot(OX(U)) = K(X).

Since we have a valuation for each point P of a Dedekind scheme X, the field

K(X) comes with an abundance of natural valuations. We should think of the

valuation vP as an indicator of the order of vanishing of a function f ∈ K(X) at

the point P .

Since the associated ring OvP is just the stalk of OX at P , so we may view

the stalk at P as those functions on X which have all their “poles” away from P .

For a Dedekind scheme X, we may construct a ringed space from the collection

of valuations vP .

Construction 2.60. Let K(X) be the field of fractions of a Dedekind scheme

X. We define a locally ringed space (v(X), ÕX) as follows.

• The points of v(X) are equivalence classes of valuations v on K(X) such

that Ov contains some OX(U) for U an affine open subset of X.

• The topology is generated by setting every nonzero valuation to be closed.

• The sheaf of rings has sections over V given by

ÕX(V ) =
⋂
v∈V

Ov = {x ∈ K(X)|v(x) ≥ 0 for all v ∈ V } .

Remark 2.61. One may note that there is a unique surjective valuation in each

equivalence class of valuations, and indeed we could have defined this space as the

set of surjective valuations, without mentioning equivalence classes. This makes

the future functoriality of this construction less elegant however, so we decided

against this.
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The canonical maps OX(U)→ K(X) realise OX as a subsheaf of the constant

K(X) sheaf. For U open in X, we have ÕX(U) ⊂ OX(U) ⊂ K(X), since a

function f ∈ ÕX(U) with no poles on U restricts to a compatible family of

functions on an affine cover Ui of U , which by the sheaf condition glues to an

element in OX(U).

Theorem 2.62. The map of locally ringed spaces

(X,OX)→ (v(X), ÕX)

given by taking each point P of X to its associated valuation vP , and including

ÕX(U) into OX(U) is an isomorphism of locally ringed spaces.

Proof. First, on the underlying topological space, this map is a homeomorphism.

For injectivity, we have that for any two closed points P,Q, there is some f ∈
K(X) such that vP (f) 6= vQ(f), by our seperatedness assumption, and the generic

point is the unique point mapped to the trivial valuation.

For surjectivity, note that if v ∈ v(X) is a nontrivial valuation, then the

associated ring Ov contains some OX(U) for U affine, so the subset of OX(U)

with v(x) > 0 is a prime ideal p of OX(U), with valuation vP equivalent to v.

Both sets have the topology generated by setting all points closed, except the

respective exceptional points, so this map is a homeomorphism.

It remains to show that the map of structure sheaves is an isomorphism. We

therefore need to check that if f ∈ OX(U), then vP (f) ≥ 0 for all P ∈ U . Passing

to an affine U ′ containing P , we see that f ∈ OX(U ′), so f ∈ OX,P , which

is just the local ring (OX |U ′)P . Since the valuation on this ring is vP , we see

vP (f) ≥ 0.

The upshot of this description is that we can directly access the structure

sheaf of a Dedekind scheme in terms of valuations. We may think of points of

Dedekind schemes as points of a space, as prime ideals in a family of rings, or

as valuations on a field. From here, we will identify these objects, and freely

switch between intepretations. For a point P in X, we denote the corresponding

valuation by vP , and the prime ideal of OX,P by p.

2.6 The projective line

Let’s now look at a fundamental example of a Dedekind scheme that is not affine,

the projective line. Let k be a field, and consider the topological space

P1
k := Spec(k[t]) ∪ {∞}
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where we topologise this by setting {∞} to be closed, and setting the closure of

xgen ∈ Spec(k[t]) to be all of P1
k.

We notice that the points of P1
k correspond to valuations associated to prime

ideals on k[t], with one extra valuation v∞, given by

v∞(
f

g
) := deg(g)− deg(f).

These are all valuations on k(t), and we give the sheaf of rings by the same process

as Construction 2.60

OP1
k
(U) =

⋂
v∈U

Ov = {f ∈ k(t)|v(f) ≥ 0 for all v ∈ U}.

Proposition 2.63. The ringed space (P1
k, OP1

k
) is a Dedekind scheme.

Proof. Let’s check that we have an open cover of P1
k by affine Dedekind schemes.

For this, consider the subsets P1
k \v∞ and P1

k \v0, where v0 is the point associated

to the ideal (t) ⊂ k[t]. These open sets cover P1
k, and we may recognise the sub-

locally ringed spaces as Spec(k[t]) and Spec(k[t−1]) respectively. These are both

the spectra of principal ideal domains, hence Dedekind domains.

We see directly that P1
k is a Noetherian scheme, and we may seperate any two

points with an appropriately chosen rational function.

Note, we could have described P1
k equally well as Spec(k[t]) and Spec(k[t−1])

glued along the respective open inclusions of Spec(k[t, t−1]), but since we haven’t

developed the theory of glueing locally ringed spaces, we will have to content

ourselves with this somewhat ad hoc description.

The example of P1
k is instructive for visualising Dedekind schemes in general,

so let’s try to describe it geometrically. Let’s look over C, and try visualising

Spec(C[t]) first. Its closed points are the prime ideals of C[t], so since every

nonzero prime ideal is (t − z) for some z ∈ C, identifying z ∈ C with (t − z),

we have the complex plane, with the cofinite topology. We have one extra point

however, which has closure the whole plane. We can think of this geometrically

as the “bulk” of the complex plane. Since this point is the intersection of all open

sets, it doesn’t contain any points of C, but by removing finitely many points, we

can’t get rid of the “bulk” of C.

To visualise P1
C, we can take the complex plane, and add one point v∞ “at

infinity”, to form the Riemann sphere, which is homeomorphic to S2 if we take the

usual Euclidean topology. Of course, our topology is much coarser, but thinking
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of P1
C as the Riemann sphere with fewer open sets is a good heuristic to aid

understanding. For instance, our sheaf of rings has

OP1
C
(P1

C − {P1, ..Pn}) =
⋂

Q∈P1
C−{P1,..Pn}

OQ.

These are precisely the rational functions in t with poles only at P1, ..Pn.

We may also note that the the stalk of OP1
C

at the point (t− α) is given by those

rational functions f(t)/g(t) with g(t) coprime to t− α, that is, with g(α) 6= 0.

Since the only rational functions without poles are constants, we see that

OP1
C
(P1

C) = k.

So we see that the Dedekind scheme P1
C is not affine.

Remark 2.64. We will not be using any complex analysis in this thesis, but

the behaviour of meromorphic functions on Riemann surfaces will provide helpful

intuition for the algebraic properties of Dedekind schemes. Many of our results

have an exact analytic counterpart in the setting of Riemann surfaces.





Chapter 3

Dedekind schemes

3.1 Finite morphisms and integral closures

In this section we will be considering a specific class of morphisms between

Dedekind schemes, and the algebraic invariants they entail.

Definition 3.1 (Finite morphisms). A morphism of schemes f : X → Y is finite

if OX(f−1(U)) is a finitely generated OY (U)-module, for all open U , and there

exists an affine cover Ui of Y such that f−1(Ui) is affine for each i.

This finiteness allows us to define an associated finite degree extension of

fraction fields.

Proposition 3.2. If f : X → Y is a finite morphism of Dedekind schemes, then

f maps the generic point of X to the generic point of Y .

Proof. Let U be an open affine of Y such at f−1(U) is an open affine in X. Now

note that both of these rings are Dedekind domains, so if OY (U)→ OX(f−1(U))

wasn’t injective, then its image would be a field, and OX(f−1(U)) would therefore

be a field since it is finitely generated as a module over OX(U). This constradicts

that f−1(U) is affine, since OX(f−1(U)) is a Dedekind domain. Thus, the map

is injective, so the preimage of the zero ideal in OX(f−1(U)) is the zero ideal in

OY (U), so the map f maps xgen to ygen.

Passing to stalks, we obtain a field extension K(X)/K(Y ) associated to a

finite morphism of Dedekind schemes.

Definition 3.3 (Degree of a finite morphism). For a finite morphism f : X → Y

of Dedekind schemes, we say the degree of f is the degree of the field extension

K(X)/K(Y ).

29
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Note that the degree is a finite integer, since for affine subsets U ⊂ Y ,

f−1(U) ⊂ X, we have OX(f−1(U)) is a finitely generated module over OY (U), so

its field of fractions has a finite Quot(OY (U)) basis.

We will be using the algebraic notions of integral elements, integral ring ex-

tensions, and integral closures, so the reader is invited to consult chapter 5 of

[AM69] for definitions and their basic properties.

We will supply a proof of the following proposition however, as it is critical

for understanding the relation between finiteness and integrality.

Proposition 3.4. Let A be a domain. If B is an A algebra, which is finitely

generated as an A-module, then B is integral over A.

Proof. Picking a finite A-module generating set {si}ni=1 of B, we may describe

the effect of multiplication by any x in B on these generators as an A valued

matrix µx. Viewing this as a matrix with coefficients in Quot(A), by the Cayley

Hamilton theorem of linear algebra, we see that P (µx) = 0, where P is the monic

characteristic polynomial of the matrix µx. Since the entries of µx had coefficients

in A, P has coefficients in A. This gives that the action of P (x) on B is zero, so

P (x) · 1 = 0, so P (x) = 0, and x is integral over A.

Remark 3.5. This lemma is true without the assumption that A be a domain,

using the generalisation of the Cayley Hamilton theorem that holds for matrices

valued in any commutative ring.

Corollary 3.6. If f : X → Y is a finite morphism of Dedekind schemes, then

for all U , we have that OX(f−1(U)) is the integral closure of OY (U) in K(X).

Proof. By the previous proposition, we see that OX(f−1(U)) is integral over

OY (U), and by the description of Theorem 2.62, we see that for any element

x ∈ K(X) not contained in OX(f−1(U)), there exists some equivalence class of

valuations w extending a class of valuations v on K(Y ), such that w(x) < 0. So

if xn =
∑n−1

i=0 aix
i is an equation witnessing the integrality of x over OY (U), then

applying a representative w of the valuation class to both sides yields the desired

contradiction, since w is positive on A.

From this corollary we see that a finite morphism f : X → Y is totally

determined by its induced finite degree extension of fields of fractions. This is

to say, the functor from Dedekind schemes with finite maps to field extensions is

faithful. We may interpret corollary 3.6 as a recipe for constructing a Dedekind

scheme. Given a finite extension of function fields we may glue the spectra of the
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integral closures of OX(Ui) in L for {Ui}i∈I an affine open cover of X. So starting

from a finite degree extension K(X)
ι−→ L, we have the following construction of

a locally ringed space. We say a valuation v : L → Z extends a valuation w on

K(X) if v ◦ ι = w.

Construction 3.7. Let L/K(X) be a fixed, finite extension of K(X) for X a

Dedekind scheme. We define a locally ringed space (vX(L), OvX(L)) as follows:

• The points of vX(L) are the equivalence classes of valuations that extend

those valuations of K(X) associated to points of X.

• This space has topology generated by setting each equivalence class of

nonzero valuations to be closed.

• This space has a sheaf of rings given by

OvX(L)(U) :=
⋂
v∈U

Ov = {x ∈ L|v(x) ≥ 0 for all v ∈ U} .

This is a locally ringed space, since for any two distinct nonequivalent valua-

tions v, w, we may find an x ∈ L with v(x) ≥ 0, and w(x) < 0, so the stalk at v

is just Ov.

We have a natural map of locally ringed space vX(L)
ι−→ X given on points by

composing equivalence classes of valuations with the map K(X) → L, with the

natural map induced from ι on structure sheaves.

Remark 3.8. We have suppressed the field extension ι : K(X) → L in our

definition here for notational clarity, but one should bear in mind that this con-

struction does depend on the map ι. This construction is also the reason we chose

to work with equivalence classes of valuations rather than surjective valuations

in Construction 2.60.

Theorem 3.9 (Krull-Akizuki Theorem). If X is a Dedekind scheme, and L/K(X)

is a finite extension, then the locally ringed space (vX(L), OvX(L)) is a Dedekind

scheme.

Proof. We will give the proof assuming that the morphism vX(L) → X is fi-

nite, noting that this will always be the case for the Dedekind schemes we are

principally interested in. For the general case, we refer to [Bou89].

We claim that the ring OvX(L)(f
−1(U)) is a Dedekind domain for all nonempty

affine open subsets U ⊂ X. Let B = OvX(L)(f
−1(U)), and A = OX(U).
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First, since B is a finitely generated module over the Noetherian A, it is

Noetherian as a module over A, so is Noetherian as a ring, since A ⊂ B.

The ring B is also integrally closed, since any x ∈ L integral over B has the

A submodule B[x] ⊂ L finitely generated over B, hence integral over A.

The ring B has Krull dimension 1. First, we need that any nonzero prime

ideal q of B has nonzero intersection with A. To see this, pick a nonzero element

x ∈ q and consider a minimal monic polynomial witnessing its integrality. Its

constant term will be nonzero, and contained in A.

Therefore B/q is a finite dimensional domain over the field A/p, so is itself

a field. So every nonzero prime ideal is maximal, and B is not a field since it

contains an element x of A, and a valuation v on L such that v(x) > 0.

Thus, B is a Dedekind domain. We may note from Theorem 2.62 that the re-

striction of (vX(L), OvX(L)) to f−1(U) as is given as Spec(OvX(L)(f
−1(U))), giving

the result.

Unfortunately, the map vX(L)→ X is not necessarily finite in full generality.

This construction is used to construct the Dedekind schemes considered in

algebraic number theory. For any finite extension K of Q, we have the canonical

map Q→ K. Taking the integral closure of Z in K yields the a ring, traditionally

called the ring of integers of K, denoted OK .

The associated Dedekind schemes Spec(OK) are all affine, and so are tradi-

tionally just treated as rings. The upshot of this alternate viewpoint is that it

allows for a clear distinction between the algebra-geometric properties of OK , and

the purely number theoretic properties.

The principal “number theoretic” property of the rings OK is the fact that

their residue fields at maximal ideals are all finite. Viewing these Spec(OK) as

affine Dedekind schemes with this finiteness property leads one to the incredibly

fruitful analogy between number fields and curves over a finite field.

3.2 The trace and the norm

For any finite field extension L/K, we may view elements of L as K-linear maps

on L via multiplication, µx(y) = xy. This gives rise to two fundamental maps

from L to K, the norm and the trace.

Definition 3.10. The field norm and trace of x are defined by taking the deter-

minant and trace of the K linear map µx.

NL/K(x) = det(µx)
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TrL/K(x) = Tr(µx)

Note that the norm and trace maps are multiplicative and additive respec-

tively, and that the trace is K-linear.

In a Galois extension L/K, the norm and trace of an element x are given by

the product or sum of the Galois conjugates of x, viewed as an element of K.

To see this, recall from field theory that the eigenvalues of µx in an algebraic

closure of L are the images of x under the [L : K] distinct field embeddings into

an algebraic closure of L.

Both of these maps are fundamental in the context of Dedekind schemes, but

we will principally concerned with the trace map, and the bilinear form it yields.

Definition 3.11 (The trace form). The trace form of L/K is the symmetric

linear map 〈 , 〉 : L⊗K L→ K given by

〈x, y〉 = TrL/K(xy).

Proposition 3.12. As a K-valued symmetric form on L, the trace form is either

nondegenerate, or identically zero.

Proof. If the trace form is degenerate, for some nonzero x ∈ L, we have 〈x, y〉 = 0

for all y ∈ L, so letting y = x−1z, we see Tr(z) = 0 for all z ∈ L.

Definition 3.13. A finite morphism of Dedekind schemes f : X → Y is separable

if the induced field extension K(Y )→ K(X) is separable.

For us, the trace form is a fundamental invariant of the finite field extensions

we will be considering, so let us recall the following fact from field theory, whose

proof may be found as theorem 5.2 of [Lan02].

Proposition 3.14. A finite degree field extension is separable if and only if the

associated trace form is nondegenerate.

The presence of a nondegenerate trace form has many consequences, but first,

we have the following compatibility result.

Proposition 3.15. Let A be an integrally closed domain, with fraction field K.

If L/K is a finite field extension, and B is the integral closure of A in L, then

for any x in B, the field trace TrL/K(x) is in A.
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Proof. If f is not separable, then the claim is trivial since the trace form is

identically zero, so assume the extension is separable. In that case, let M denote

a Galois closure of L/K. For x in B, x is integral over A by assumption. By

applying elements of the Galois group to a monic polynomial witnessing this, we

see its Galois conjugates in M are also integral over A.

So the sum of these conjugates is integral over A, so the trace of x is integral

over A, and contained in K. Hence it is contained in A since this ring is integrally

closed.

In a separable finite extension L/K(X), we may use the trace form to prove

that the map from Construction 3.7 is finite.

Theorem 3.16. For L/K(X) a separable field extension the morphism vX(L)→
X of Construction 3.7 is finite.

Proof. Construction 3.7 produces affine schemes from affine schemes, so it suffices

to prove the following finiteness statement. Let B/A be rings such that A is

Noetherian, contained in a separable field extension L/K with L = Quot(B),

K = Quot(A), with B the integral closure of A. Then B is finitely generated as

an A-module.

Since the trace of L/K is nondegenerate and symmetric, pick an orthogonal

K-basis {bj}nj=1 of L, scaling to ensure that it lives in B. We claim that every

element of B is contained in A submodule of L spanned by
bj
d

where d is given

by

d :=
n∏
j=1

Tr(b2
j).

Given an element x of B, we can express x in the bj basis as x =
∑n

j=1 αjbj. By

Proposition 3.15, Tr(bjx) ∈ A, and the bj are orthogonal, so αj Tr(b2
j) ∈ A, so

αjbj = αi Tr(b2
i )
∏
j 6=i

Tr(b2
i )
bj
d
.

So x lies in the A span of the
bj
d

, and so B is finitely generated since A is

Noetherian.

For a finite morphism f : X → Y of Dedekind schemes, the associated

morphism of sheaves of rings OY → f∗OX induces, for each U open in X, an

OY (U)-module structure on OX(f−1(U)). We will want to view this collection as

a compatible family of modules over the rings OX(U), leading to the following

definition.
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Definition 3.17 (Sheaf of OX-modules on a scheme). A sheaf F of OX-modules

over X is a sheaf F of abelian groups on X, such that each F(U) is an OX(U)-

module, such that if U ⊂ V , and we view F(U) as an OX(V )-module by pullback,

the restriction maps F(V )→ F(U) are morphisms of OX(V )-modules.

A morphism of sheaves of OX-modules is a morphism of sheaves of abelian

groups such that over each open U we have a morphism of OX(U)-modules.

We will investigate sheaves of OX-modules further in chapter 4. For now we

are principally interested in upgrading the trace map to a map of sheaves.

Proposition 3.18 (Trace is a sheaf morphism). If f : X → Y is a finite mor-

phism of Dedekind schemes, then the restriction of the field trace

TrK(X)/K(Y ) : K(X)→ K(Y )

induces a morphism of OY -modules

TrX/Y : f∗OX → OY .

Proof. Since f∗OX(U) is the integral closure of OY (U) in K(X), by Proposition

3.15 we have that TrK(X)/K(Y ) descends to a map of these subrings.

This is a morphism of OY -modules since the trace is natural, and is K(Y )-

linear.

3.3 Completion

Before investigating these morphisms further, we need to take a small detour, to

review some commutative algebra, which plays a key role in this chapter.

Definition 3.19 (Completion). Given an ideal I in a ring R, we have a family

of natural maps R/In+1 → R/In. We define the I-adic completion of R to be the

ring R̂I := lim(R/In). Similarly we define the I-adic completion of an R-module

M to be M̂ I := limM/InM , a module over R̂I .

We define the completion of OX at the closed point P to be the p-adic com-

pletion of OX,P , where p is the maximal ideal corresponding to P .

When the ideal I is clear from context, we will drop the I, and refer to these

completed objects as R̂ and M̂ .

To intepret completion geometrically, recall the correspondence between closed

subschemes and ideals of an affine scheme given by definition 2.34. Completion at
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the closed subscheme S ⊂ X can be thought of as an “ultra-local” analysis of the

functions defined on that subscheme S. When we localise, we look at functions

on X, and identify them based on their behaviour in an open neighbourhood of

S. This can be thought of as “shrinking” the domain of the functions to be on

smaller and smaller neighbourhoods of S. This results in a local ring, but still

retains the information of the global functions, as the fraction field is the same.

Let’s now consider the case when S is a closed point P . If we consider a

function f on X, defined at P , we have a sequence of infinitesimal data associated

to it, the cosets of f in OX,P/p
n. For instance, the coset of f in OX,P/p is the

“value” at p, and the coset in OX,P/p
2, is this value plus a “cotangent” vector,

corresponding to the lift of OX,P/p
2 → OX,P/p. The completion at P is the ring of

all collections of “infinitesmal data” at P , irrespective of whether they arise from

a function on X actually defined at P . This is in a sense an “outward” description

of the functions, which results in even more “locality” than localisation.

Example 3.20. Let’s consider the affine Dedekind scheme Spec(C[t]), and the

point P = 0, corresponding the ideal (t). Localising at P = 0 results in the stalk

C[t](t), the rational functions without t dividing their denominator. Completing

at P = 0 results in limC[t]/tk ∼= C[[t]], and the natural composite map

C[t](t) → Ĉ[t](t) ∼= C[[t]]

interprets a rational function as its sequence of Taylor coefficients at P = 0.

Proposition 3.21. The completion of an R-module M with respect to In is

canonically isomorphic to the completion with respect to I.

Proof. The diagram of R/Ini is naturally a final subfunctor of the diagram of

R/In, so the inclusion induces an isomorphism of limits.

The following lemma should be thought of as algebraic justification for the

intepretion of completion as an ultra-local process.

Proposition 3.22 (Completion is ultra-local). For pairwise relatively prime ide-

als pi of R, and any ideal I =
∏n

i=1 p
ei
i the I-adic completion of an R-module M

is isomorphic to the product of the pi-adic completions of M . If M was itself an

R algebra, then this decomposition is as R algebras.

Proof. The isomorphism of the Chinese remainder theorem is natural, in that the
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following diagram commutes.

M/Im+1M M/ImM

∏n
i=1M/pm+1

i M
∏n

i=1M/pmi M

∼ ∼

So we have an induced isomorphism on the associated limits, which followed by

the isomorphism of Proposition 3.21, gives the result. The isomorphism of the

Chinese remainder theorem also preserves the R algebra structure of M , giving

the second claim.

Interpreting this geometrically, consider a finite subset S of an affine Dedekind

scheme X. When we localise at S, the points are still “connected” in the sense

that the fraction field detects more than just the disjoint collection of local rings

OX,P . When we complete at S however, we instead get the product of the com-

pletions at each point, the behaviour is truly “local”.

Proposition 3.23. The completion of a free R-module M is a free R̂-module M̂ .

Proof. A basis of M over R gives a compatible basis of each quotient, and thus

a basis of M̂ .

Given a discrete valuation ring R, we may complete at its maximal ideal, and

this process is functorial with respect to local morphisms of discrete valuation

rings. Going “ultra-local” in this way results in an new extension of complete

discrete valuation rings, cutting out unwanted global behaviour.

Theorem 3.24 (Completing discrete valuation rings). If R is a discrete valuation

ring with maximal ideal m, then the m-adic completion of R is also a discrete

valuation ring, and the ideal m̂ can be generated by any uniformising parameter

of R.

This theorem follows at once from the following lemma, which has the same

hypotheses as the theorem.

Lemma 3.25. For a fixed uniformising parameter π in R, any element α in R̂

can be expressed uniquely as πku = α for some unit u ∈ R̂∗.

Proof. First, identify the elements of R̂ with sequences (αi) such that αi ∈ R/mi,

and

αi ≡ αj mod mk for k ≤ min(i, j).
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Given (αi) in R̂, pick the minimal i such that αi is nonzero in R/mi+1. Let

aj be a lift of αj to R, and express aj = πivj for vj ∈ R∗.
We claim that the reductions v̄j-mod mj−i of these vj form a compatible

sequence, and hence an element of R̂.

Let’s check that v̄l − v̄m = 0-mod mk−i for k ≤ l,m. From our intitial

compatibility assumption, we see that πi(vl − vm) ≡ 0 mod mk, so we have vl −
vm ∈ mk−i within R, from which reducing mod mk−i gives the result.

It remains to show that this element (v̄j) is a unit in R̂. By minimality of i, we

see that each vj is a unit in R, and the cosets of their inverses are compatible.

From here, we will be considering extensions of rings at varying degrees of

locality, so we will introduce some nonstandard notation for clarity.

Let φ : A→ B be an injective map of rings, which we denote by B/A.

• We say B/A is local if A and B are local rings, and φ is a local ring

morphism.

• We say B/A is semi-local if A is local, and B has finitely many prime ideals.

• We say B/A is global otherwise.

The source of this terminology is that for a finite map of Dedekind schemes

f : X → Y , we have a family of injective ring morphisms OY (U) → f∗OX(U).

The associated map on stalks at P in Y gives OY,P → (f∗OX)P , a semilocal ring

morphism. Picking a point Q mapping to P , we may compose this with the

natural map to the stalk of Q to get a local extension OY,P → OX,Q.

From the previous theorem, we see that completion at a prime ideal preserves

local morphisms for the class of rings we are interested in.

Lemma 3.26 (Completion in the semilocal setting). Let B/A be a semilocal ring

morphism, with A a discrete valuation ring, such that B is a finite free A-module.

The the completion B̂m of B with respect to the maximal ideal m of A is free as

an Âm algebra.

Proof. This follows at once from propositions 3.23 and 3.22.

With reference to a finite morphism f , we will use the notation Q : Q → P

to qualify over the points Q such that f(Q) = P .
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Corollary 3.27. For a finite morphism f : X → Y of Dedekind schemes, and

point Q ∈ X, with f(Q) = P ∈ Y ,the local ring morphism Ôp
Y,P → Ôq

X,Q

gives Ôq
X,Q the structure of a finite free Ôp

Y,P algebra. Furthermore the semilocal

completion decomposes as a product of the local completions

̂(f∗OX)
p

P
∼=

∏
Q:Q→P

Ôq
X,Q.

Proof. This follows at once from Lemma 3.26 and Proposition 3.22.

This corollary is in some sense the whole point of this section, as the local

morphism OY,P → OX,Q will almost never give a free OY,P -module structure to

OX,Q, but by completing, we can ensure this.

The upshot of this is that we can now localise our linear algebraic construc-

tions, the trace and the norm map.

For a finite morphism f : X → Y of Dedekind schemes, we use the notation

Q/P to refer to a pair of points Q ∈ X, P ∈ Y , such that f(Q) = P . Let

f : X → Y be a finite morphism of Dedekind schemes.

Definition 3.28. The semilocal trace at P is the map

TrX/P : (f∗OX)P → OY,P

obtained by taking the stalk at P of the trace map TrX/Y .

Completing with respect to p, and noting the diagonal decomposition of corol-

lary 3.27, we define TrQ/P , the local trace at Q/P to be the following composite.

Ôq
X,Q

̂(f∗OX)
p

P

ÔY,P

p
TrQ/P

T̂rX/P

This is alternatively given by viewing an element x of Ôq
X,Q as an endomorphism

µx of ̂(f∗OX)
p

P by left multiplication, and taking the trace of this endomorphism.

We define the semilocal norm NX/P of x by taking the determinant of µx, and

the local norm NQ/P by taking the determinant of µx, this time viewing it as an

Ôp
Y,P linear endomorphism of the free module Ôq

X,Q.

This results in the following decomposition of the semilocal norm and trace.
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Proposition 3.29. For all x ∈ (f∗OX)P , we have that the semilocal trace and

norm are the sum and product of the local traces and norms repectively.∏
Q:Q→P

NQ/P = NX/P

∑
Q:Q→P

TrQ/P = TrX/P

Proof. The map (f∗OX)P → ̂(f∗OX)
p

P in view of the decomposition of corollary

3.27 maps x to (x, x, .., x), giving the result by elementary linear algebra.

3.4 Local invariants of a finite morphism

In this section, let g : X → Y be a fixed finite morphism of Dedekind schemes. All

discussion is with reference to this fixed morphism unless otherwise specified. For

each pair of pointsQ/P , we can associate a number of invariants. These invariants

are local in the sense of depending only on the local extension OY,P → OX,Q.

We will use the notation κ(P ) to denote the residue field of the local ring

OX,P , that is, κ(P ) := OX,P/p.

Definition 3.30. The residual degree fQ/P at Q/P is the degree of the extension

κ(Q)/κ(P ).

Note that since our morphism is finite, this is a well defined positive integer.

Our other primary local invariant is the ramification index.

Definition 3.31. The ramification index eQ/P is the unique integer such that

p = qeQ/P as OX,Q ideals.

We will abuse our notation slightly and sometimes refer to these as fq/p and

eq/p when we wish to think of the points Q,P as their corresponding prime ideals.

To show that this is well defined, we will use the following useful lemma,

showing we may extend proper ideals to proper ideals.

Lemma 3.32 (Going up). If B/A is an extension of domains, with B a finitely

generated A-module, then any proper ideal I in A remains a proper ideal once

extended to B.

Proof. It suffices to show the claim for elements, that if x is not invertible in A,

then x is not invertible in B. If x had an inverse x−1 in B, then since the extension
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B/A is finite, x−1 is integral over A. Consider a monic polynomial witnessing the

integrality of x−1 of minimal degree. We see that by multiplying by x, we obtain

a polynomial in x−1 of strictly smaller degree, which is still monic. Thus, since

x−1 is not in A, no such x−1 in B can exist.

Corollary 3.33. The integer eQ/P is well defined and nonzero.

Definition 3.34 (Ramified points). With respect to our finite morphism g, a

point Q ∈ X is ramified in X if either of the two conditions hold.

• eQ/P > 1

• κ(Q)/κ(P ) is an inseparable field extension, where P = f(Q).

A point P in Y is ramified in Y if some Q lying above it is ramified in X.

These local invariants respect composition of morphisms, if X → Y and

Y → Z are finite morphisms, and Q/P and P/S are pairs of points, then

eQ/P eP/S = eQ/S and fQ/PfP/S = fQ/S.

Both of these quantities are also invariant under completion, since they are both

invariants of OX,Q/p ∼= ÔX,Q

p
/p̂.

Theorem 3.35 (Degree is seen semilocally). If the degree of the morphism g is

n, then for any closed point P of Y , we have∑
Q:Q→P

eQ/PfQ/P = n.

To prove this, we will first need the following lemma.

Lemma 3.36. For B/A a local extension of discrete valuation rings with maximal

ideals q/p, the dimension of B/p as an A/p vector space is eq/pfq/p.

Proof. In view of the definition of eq/p, by induction we will prove that the di-

mension of B/qm over A/p is m · fq/p, for m ≤ eq/p. For any 1 ≤ j ≤ eq/p we have

a short exact sequence of A/p vector spaces

0→ qj−1/qj → B/qj → B/qj−1 → 0.

By picking a uniformising parameter π of B, we see that qj−1/qj is one dimen-

sional as a B/q vector space, hence fq/p dimensional over A/p, so the result follows

by induction.
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Proof of Theorem 3.35. First, note that the degree of g may be computed semi-

locally, since the fraction fields of (g∗OX)P and OY,P are still k(X) and k(Y ).

Since OY,P is a Dedekind domain, and the extension B/A is finite, by Lemma

3.32 we have that p extends to a nonzero ideal in B, hence can be expressed as

p =
∏

q
eQi/P

i . Complete both sides with respect to p, and observe the diagonal

decomposition of corollary 3.27, and Lemma 3.36 together give the result.

Lemma 3.32 also shows that finite morphisms of Dedekind schemes are sur-

jective.

Proposition 3.37. A finite map of Dedekind schemes g : X → Y is surjective

and has finite fibres.

Proof. Surjectivity on closed points follows from Lemma 3.32, surjectivity on the

generic point is Proposition 3.2 and the finiteness of fibres follows from continuity,

in view of the topology our Dedekind schemes have.

Corollary 3.38. Finite morphisms of Dedekind schemes are open maps on the

underlying topological spaces.

Proof. This follows from the topology of Dedekind schemes coupled with the

previous proposition.

Let’s now consider the morphism P1
C → P1

C associated to the field extension

k(t)→ k(x)

t→ x2.

On the complement of ∞, we see that this is the ring morphism C[t]→ C[x]

which maps t to x2. From this, we see that the ideal (t) becomes (x)2, so (t) is

ramified, with ramification index 2.

Under the bijection between closed points away from infinity and C, we see

that this map is given geometrically by z → z2 on the complex plane. Ramifi-

cation is the phenomena of the different sheets of this map collapsing at a single

point.

It is not hard to visualise the map z → zn in a similar manner, and since

ramification is a local phenomena, this is in some sense all there is to visualising

it, in the intuitive case of C.
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3.5 Divisors on Dedekind schemes

We will be interested in describing the points of X and Y which are ramified, and

for this we introduce a system for describing the points of a Dedekind scheme,

with mutliplicities.

Definition 3.39 (Divisors). The group of divisors Div(X) on a Dedekind scheme

X is the free abelian group on the closed points of X. A divisor is effective if it is

an N linear combination of points of X, and we have a partial order on divisors

given by D ≥ D′ if D−D′ is effective. A divisor D is negative if −D is effective.

Definition 3.40. Let D =
∑

P∈X aPP be a divisor. The support of D is the

subset of X of points such that aP 6= 0. We define the order vP of the divisor D

at P to be vP (D) := aP .

These groups have natural restriction maps Div(X)→ Div(U) given by taking

projections, and this collection of data is seen to be a sheaf of abelian groups on

the Dedekind scheme X.

We will be encountering divisors in many forms throughout this thesis, and

we will learn progressively more interpretations of them.

In light of Theorem 2.48, for an affine Dedekind scheme Spec(R), we may

identify effective divisors on X with nonzero ideals of R, or equivalently closed

subschemes of Spec(R).

We have a natural source of divisors on a Dedekind schemes X, associated to

nonzero elements of K(X). For x in K(X)∗, we define the divisor div(x) by

div(x) :=
∑
P∈X

vP (x)P.

This sum is finite since x = g/h for some g, h defined on an open affine U , so

since g, h have poles contained entirely in the complement of U , and only finitely

many zeros. Note that vP (div(x)) = vP (x).

From this, we may also view a divisor as giving prospective “orders of vanish-

ing” at a finite set of points.

Definition 3.41. A divisor D is principal if it is of the form div(f) for some

f ∈ K(X)∗.

Note that the principal divisors form a subgroup P (X) of Div(X), since

div(f) + div(g) = div(fg).
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The difference between these groups is an important invariant of a Dedekind

scheme, the class group.

Definition 3.42. The class group Cl(X) of a Dedekind scheme X is the quotient

Div(X)/P (X).

We will investigate this group more thoroughly in chapter 4.

Remark 3.43. This group for the Dedekind scheme Spec(OK) is called the ideal

class group in algebraic number theory.

We have two natural operations on the groups of divisors induced from the

finite map g : X → Y .

Definition 3.44 (Pullback of divisors). We define g∗ on points by

g∗(P ) =
∑

Q:Q→P

eQ/PQ.

This extends by linearity to a map of abelian groups Div(Y )
g∗−→ Div(X).

Remark 3.45. In the affine case A → B, where we can identify divisors with

ideals, and this map is just given by extension of ideals. This is also true in the

non affine case, with the correct notion of sheaves of ideals, given in definition

4.13.

Definition 3.46 (Pushforward of divisors). We also have a natural pushforward

on divisors, defined on points as

g∗(Q) = fQ/Pg(Q)

We extend this by linearity to a map Div(X)
g∗−→ Div(Y ).

Remark 3.47. The following propositions can be seen as justification for the

naturality of these definition, compared to taking the image and preimage without

weighting by the local invariants.

Proposition 3.48 (Composition of pullback and pushforward). On Div(Y ), the

composition g∗g
∗ is given by multiplication by n, where n is the degree of the map

g.

Proof. This follows immediately from Theorem 3.35.



3.5. DIVISORS ON DEDEKIND SCHEMES 45

The pushforward on divisors is also known as the norm map, because of the

following compatibility.

Proposition 3.49 (Compatibility of the norm map and the pushforward). The

norm map on divisors respects the usual norm on elements, in that for x ∈
K(X)∗, we have

div(NK(X)/K(Y )(x)) = g∗(div(x)).

Proof. It suffices to show the claim locally at each pair Q/P since we have

vP (NK(X)/K(Y )(x)) = vP (NX/P (x)) =
∑

Q:Q→P

vP (NQ/P ).

Let C = Ôq
X,Q, A = Ôp

Y,P , and L/K be the associated field extension. We may

split L/K further into the composition of L/LI and LI/K, where these are purely

inseparable and separable respectively. Let B denote the integral closure of A

in LI , noting that C/B and B/A are both finite, as C is finite over A. Let the

corresponding points be Q/S/P , and the associated maps be

Spec(C)
k−→ Spec(B)

h−→ Spec(A).

Recalling the decomposition an arbitrary element given in Lemma 3.25, it

suffices to prove the claim for a uniformising parameter of these rings.

For a purely inseparable extension of degree pn, the norm is given by N(a) =

ap
n
, as can be seen from the characteristic polynomial of µa being xp

n − ap
n
.

Picking uniformisers π in B, γ in C, we have

eQ/S div(NL/LI (γ)) = div(NL/LI (π)) = div(πp
n

)

=pn · S
=eQ/SfQ/S · S
=eQ/Sk∗(div(γ))

For the separable extension LI/K, we have that the norm is the sum over coset

representatives of the fixed subgroup corresponding to LI in a Galois closure.

Since there exists a valuation w extending vP , and any such valuation will have

its conjugate valuations also extending vP , we have

div(NLI/K(x)) = [G : H]vP (x) · P.

On the other side we have

h∗(div(x)) = fS/P eS/PvP (x) · P.
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Thus these are equal by Theorem 3.35.

The map g∗ ◦ div is functorial with respect to compositions, so it remains to

show that

Div(NLI/K ◦NL/LI (x)) = Div(NL/K(x))

where L/LI is purely inseparable, and L/K is separable. For this, recall from

field theory [Lan02] that the norm in a purely inseparable extension is given by

raising to the power of the degree pn, and NL/K(x) = NLI/K(x)[L:LI ] if x ∈ LI . So

to complete the proof, we compute:

pn div(NL/K(x)) = div(NL/K(xp
n

)) = div(NLI/K(x(pn)2)) = pn div(NLI/K ◦NL/LI (x)).

3.6 The discriminant and the different

In this section, we will describe two effective divisors which detect the ramification

of a finite morphism of Dedekind schemes f : X → Y .

Proposition 3.50. If f : X → Y is a finite morphism of Dedekind schemes,

then f∗OX is locally free over OY . That is, for any P ∈ Y , we may find an open

U ⊂ Y containing P such that f∗OX(U) is a free OY (U)-module.

Proof. Let n be the minimal number of generators needed to generate f∗OX(U)

as an OY (U)-module, as U ranges over the open sets containing P , and U ′ an

open set with module generators {si}ni=1 ∈ f∗OX(U ′) witnessing this minimum.

If these were OY (U) linearly dependent, then we would have a nonzero relation

n−1∑
i=1

aisi = ansn.

Pick a uniformiser π, restricting U ′ if necessary to ensure that π has vQ(π) = 0

for all Q 6= P ∈ U ′.
Multiplying by a suitable (possibly negative) power of π, we may assume one

of the ai has vP (ai) = 0. But then passing to a subset U ′′ of U ′ that contains P , on

which that specific ai is invertible yields a smaller generating set. This is possible

since vP (ai) = 0. Thus, our original generating set must have no relations, giving

the desired freeness.

For an affine subset U on which f∗OX(U) is free over OY (U), let {si}ni=1 be

a basis, and consider the matrix of the trace form with respect to this basis

M = [Tr(sisj)]i,j.
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Definition 3.51 (The discriminant divisor). We define the discriminant divisor

over U to be div(det(M)). Since the trace form is natural with respect to ret-

rictions, and the localisation of a basis is a basis, we see that viewing these as

sections of Div(X) as a sheaf, we obtain a divisor on all of X. This divisor is the

discriminant divisor ∆X/Y .

This well defined, since on U , div(det(M)) is independent of choice of basis

since the determinant of the base change matrix is invertible in OY (U).

Remark 3.52. In algebraic number theory, the discriminant is usually defined

as an ideal, but we have chosen to define the discriminant at as a divisor for

simplicity. We will see in Proposition 4.16 how to relate divisors and ideals on a

Dedekind scheme.

Note that we could have defined the discriminant divisor as a sum of

vp(det(M)) · P

over all points of Y . By completing, we can decompose this expression further,

since the completion of (f∗OX)P at p splits orthogonally as in corollary 3.27. We

may choose a basis of each free submodule, and note that the determinant is

multiplicative in the presence of this direct sum decomposition.

Therefore, the semilocal discriminant vP (det(M)) ·P can be computed as the

sum of the discriminants of each point Q over P , defined by vP (det[TrQ/P (cicj)])

for {ci}mi=1 a basis of Ôq
X,Q over Op

Y,P .

Theorem 3.53 (The Discriminant detects ramification on the target). Given

a finite separable morphism of Dedekind schemes f : X → Y , a point P of Y

ramifies if and only if its contained in the support of ∆X/Y . If the morphism is

inseparable, then every point of Y is ramified.

Proof. The field extension K(X)/K(Y ) splits into K(X)/L/K(Y ), with L/K(Y )

separable, and K(X)/L purely inseparable. Since f is finite and OY (U) is Noethe-

rian, we have that the associated map vX(L)→ Y is finite, so we may assume our

morphism factors as a purely inseparable finite morphism followed by a separable

finite morphism. Let us prove the insperable claim first.

By the multiplicativity of eQ/P , and the fact that inseparable field extensions

remain insperable upon extending further, it suffices to check the second claim in

the case of a purely inseparable extension.
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Expressing an inseparable extension of iterated degree p = char(K(Y )) ex-

tensions, it suffices to check the case of a purely inseparable morphism of degree

p.

By completing at Q over a point over P , we may assume we are in the ultra-

local situation.

If eQ/P is not equal to p, then the residue extension has degree p by Theorem

3.35. Pick an element x of Ôq
X,Q that has coset x̄ in the residue field ÔX,Q/q not

contained in OY,P/p. This x is not contained in OY,P , hence generates the field

extension, so xp is integral over OY,P , and contained in K(Y ), hence is in OY,P by

integrality. So the coset of x witnesses that the residue extension is not separable.

So now we may assume our morphism is separable. The semilocal trace form

on (f∗OX)P descends to an A/p linear form on (f∗OX)P/p, and this form will be

non degenerate if and only if vP (∆X/Y ) = 0.

Furthermore, this form will be nondegenerate if and only if every local trace

form TrQ/P is nondegenerate, so after completing, we may assume that we are in

the ultra-local case, of Q/P .

By the naturality of the trace, the reduction of the trace TrQ/P (x) is given by

the trace of the κ(P ) endomorphism µx̄ on (f∗OX)P/p.

So if eQ/P > 1, a uniformiser π will act as a nilpotent linear operator on

this quotient, hence TrQ/P (πx) = 0 for all x, so the form is degenerate, and the

discriminant is nonzero at P . If the residue extension is inseparable, then TrQ/P

will be identically zero in κ(P ), so associated determinant will lie in p.

Finally, if the residue extension is separable, and eQ/P = 1, then the residual

trace form TrQ/P equals the field trace form of κ(Q)/κ(P ), and this is nondegen-

erate, hence the trace form is nondegenerate, so vP (∆X/Y ) = 0

The discriminant is a somewhat coarse indication of ramification, since it is

only on the base Y , but we also have a divisor detecting ramification up in X.

Definition 3.54 (The different divisor). We define the divisor DX/Y as a sum

over points in X, as

vQ(DX/Y ) = max
06=y∈K(X)

{
vQ(y)

∣∣∣ TrQ/P (y−1x) ∈ Ôp
Y,P for all x in Ôq

X,Q

}
.

That is, the value of the different at a point Q is the highest order of vanishing a

function y can have at Q, such that TrQ/P (y−1x) ∈ Ôp
Y,P for all x ∈ Ôq

X,Q. This

can be interpreted as y−1 acting like an element of Ôq
X,Q with respect to the trace

pairing.
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Proposition 3.55. The different DX/Y is a well defined effective divisor on X.

Proof. First, that vP (DX/Y ) is finite and positive. Proposition 3.15 gives that

this number is positive. Since Ôq
X,Q is finitely generated over Ôp

Y,P , this number

is finite, multiplying any basis element by elements of Op
Y,P and summing them

can only make this valuation more negative.

So it remains to show that vQ(DX/Y ) = 0 for all but finitely many Q in X.

Pick an affine open set U where f∗OX(U) is free over OY (U). Then the trace

form yields an injective f∗OX(U) linear map

f∗OX(U)→ homOY (U)(f∗OX(U), OY (U))

given by x → Tr(x ). This map is an isomorphism after inverting finitely many

elements of f∗OX(U), and we see directly from the definition that if this map is an

isomorphism at Q, we have vQ(DX/Y ) = 0. So the support of DX/Y is contained

in a finite set.

Remark 3.56. Similar to our definition of the discriminant, for simplicity we

have opted to give this as our definition of the different divisor. The reader

comfortable with quasicoherent sheaves may find the statement of Proposition

4.61 a more enlightening definition.

The different is a more refined measurement of ramification than the discrim-

inant, the different detects ramification on the source X.

Theorem 3.57. Let f : X → Y be a separable finite morphism of Dedekind

schemes. A point Q is ramified in X if and only if its contained in the support

of the different.

Proof. Since the different is defined locally, and ramification is local, we may

assume the local case. Let B = Ôq
X,Q, and A = Ôp

Y,P .

In the unramified case, pick b ∈ B∗ with TrQ/P (b) = 1, and consider arbitrary

y = πnu, with n ≥ 0. If TrQ/P (y−1x) ∈ A for all x ∈ B, then set x = πn−1u−1b,

and we may compute

TrQ/P (y−1x) = TrQ/P (π−1b) = π−1 TrQ/P (b) = π−1.

So we have that n = 0, and vQ(DX/Y ) = 0.

In the ramified case, if the residue extension is inseparable, then we claim

that Tr(π−1x) ∈ A for all x ∈ B. Since the trace form on residue fields is
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identically zero, we have Tr(γπ−1x) ∈ (γ). Thus by A linearity of the trace, we

have Tr(xπ−1) ∈ A for all x ∈ B. So vP (DX/Y ) ≥ 1.

In the ramified, separable residue extension case, we claim that Tr(π1−ex) ∈ A
for all x ∈ B. Note that π1−exγ acts as a nilpotent linear transformation on B/p,

so has zero trace there, which is equivalent to TrQ/P (π1−exγ) ∈ (γ), so by A

linearity we have Tr(π1−ex) ∈ A, so vQ(DX/Y ) ≥ e− 1.

As could be suspected, the disciminant and the different divisors are related,

and we have the following theorem.

Theorem 3.58. The pushforward of the different divisor DX/Y is the discrimi-

nant divisor ∆X/Y .

f∗DX/Y = ∆X/Y .

We will prove this theorem next chapter after developing some more theory

regarding sheaves of modules.



Chapter 4

Sheaves of modules

We will be interested in sheaves of modules over Dedekind schemes in this chapter,

so let’s start by interpreting R-modules as sheaves of OR-modules over Spec(R).

For anR-moduleM , we may construct a sheaf M̃ ofOR-modules on (Spec(R), OR),

by sheafifying the presheaf of OR-modules given by

M ′(U) := M ⊗R OR(U).

By a similar argument to the proof of Theorem 2.30, one may show that the

canonical map M → M̃(Spec(R)) is an isomorphism. This construction is func-

torial, so we obtain a functor R-Mod to sheaves of OR-modules over Spec(R).

Similarly to Theorem 2.32, we have the following result, the proof of which

can be found at proposition 2.5.1 in [Har77].

Theorem 4.1. The functor M → M̃ is a fully faithful embedding of R-Mod into

the category of sheaves of OR-modules on Spec(R).

Definition 4.2 (Affine quasicoherent sheaf). A sheaf ofOR-modules over Spec(R)

is quasicoherent if it is isomorphic to a sheaf in the image of this functor.

Theorem 4.1 states that we have an equivalence between quasicoherent sheaves

on an affine scheme Spec(R), and modules over the ring R. We can intrinsically

describe quasicoherent sheaves over an affine scheme as those sheaves which are

totally and canonically determined by their global sections. This is to say F is

quasicoherent over an affine scheme Spec(R) if the canonical map ˜F(Spec(R))→
F is an isomorphism.

Just like the construction of schemes from affine schemes, we can globalise this

to obtain the definition of a quasicoherent sheaf of OX-modules over an arbitrary

scheme X.

51
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Definition 4.3 (Quasicoherent sheaf on a scheme). A sheaf F of OX-modules

on a scheme X is quasicoherent if for all open affines U in X, we have F|U is a

quasicoherent sheaf on U .

Remark 4.4. This is equivalent to the seemingly weaker property that F|Ui
is

quasicoherent on some affine open cover {Ui}i∈I of X, a proof of which can be

found as proposition 2.5.4 of [Har77].

From this, we also have the following theorem, analogous to Theorem 2.21 of

chapter 2.

Theorem 4.5 (Descent of quasicoherent sheaves). For any open cover U =

{Ui}i∈I of a scheme X, we have an equivalence of categories between quasico-

herent sheaves on X and quasicoherent sheaves on our cover U with descent data.

F → {F|Ui
, γi,j}i,j∈I

From this, if we take {Ui}i∈I to be an affine open cover of a scheme X, we

see that quasicoherent sheaves can be viewed as a families of modules, along with

glueing data.

In view of this, many familiar constructions on modules become operations

on quasicoherent sheaves. Let F , G be sheaves of quasicoherent OX-modules over

a scheme X.

Constructions 4.6.

i) The direct sum sheaf F ⊕ G has sections over U given by F(U)⊕ G(U).

ii) The tensor product sheaf F⊗G is given as the sheafification of the presheaf

F̂ ⊗ G(U) = F(U)⊗OX(U) G(U).

iii) The internal hom-sheaf Hom(F ,G) has sections over U the sheaf homo-

morphisms hom(F|U ,G|U), with the natural OX(U) action. The restriction

maps come from restricting a morphism to hom(F|V ,G|V ).

iv) The kernel of a morphism F f−→ G of OX-modules is the subsheaf of F with

section over U given by ker(f)(U) = ker(f |U).

v) The cokernel of a morphism of OX-modules F f−→ G is the sheafification

coker(f) of the cokernel presheaf ̂coker(f)(U) = coker(f |U).
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vi) For a morphism F f−→ G of sheaves, we have the image presheaf of f in

G given by îm(F)(U) = im(f |U). The natural inclusion into G uniquely

factors through its sheafification, and this subsheaf of G is the image sheaf

im(f).

Definition 4.7. A sheaf F of OX-modules is free if F ∼=
⊕

i∈I OX , and F is

locally free if for some open cover {Ui}i∈I of X, each F|Ui
is a free sheaf of

OX |Ui
-modules.

Remark 4.8. One may note that these operations and properties are precisely

the usual ones in R-Mod for quasicoherent sheaves over an affine scheme Spec(R).

One may note that only sometimes sheafification of the obvious presheaf was

needed. This was required for the constructions that do not preserve limits, such

as taking tensor products, and taking colimits.

Let X be a scheme that admits an open cover of affines {Ui}i∈I , with each

Ui∩Uj affine. In view of Theorem 4.5, we may note that these operations respect

localisation, so extend naturally to functors on the category of modules along

with descent data. So these constructions can alternatively be constructed by

applying them on the modules of an affine open cover, then glueing.

From this point, we will identify quasicoherent sheaves over affine schemes

with their corresponding modules.

Definition 4.9. A sequence of morphisms of quasicoherent sheaves ofOX-modules

F f−→ G g−→ K is exact if for all open affine subschemes the following sequence is

exact.

F|U
f |U−−→ G|U

g|U−−→ K|U

This is equivalent to im(f) = ker(g) as subsheaves of G.

Crucially, the restriction of this sequence is not required to be exact over all

open sets. In general the “sections over U” functor Γ( , U) : F → F(U) will not

be right exact. It has been shown in [Gro57] that the right derived functors of

Γ( , U) exist, and furthermore can reasonably be computed, since the exactness

over affines allows for computations akin to Čech cohomology.

Since the stalk of F at P can be computed with reference to an open affine

U containing P , we have that F f−→ G g−→ K is exact if and only if for all P ∈ X,

the sequence of OX,P -modules FP
f−→ GP

g−→ KP is exact.

Definition 4.10. A morphism of sheaves F f−→ G is injective (resp surjective) if

its kernel (resp cokerel) is the zero sheaf.
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Quasicoherent sheaves over a scheme X inherit some of the excellent category

theoretic properties of R-Mod.

Theorem 4.11. Quasicoherent sheaves on a scheme form a closed symmet-

ric monoidal abelian category with an internal hom functor Hom. In particu-

lar, constructions 4.6 preserve the quasicoherence property, the canonical map

coker(f) → im(f) is an isomorphism, and we have a canonical isomorphism of

sheaves

Hom(F ⊗ G,K) ∼= Hom(F ,Hom(G,K)).

Observe that for a quasicoherent sheaf F on X a scheme, on each open affine

U , there exists an exact sequence of OX-modules OX
⊕I → OX

⊕J → F → 0, given

by chosing a presention of the module F|U .

Remark 4.12. This can also be taken as a definition of quasicoherence, a sheaf

F of OX-modules is quasicoherent if for every point, we have a neighbourhood U

such that F|U is the cokernel of a morphism of free OX |U -modules.

Let’s now upgrade the ideal-closed subscheme correspondence of 2.34 to the

non-affine situation.

Definition 4.13. A sheaf of ideals I on a scheme X is a quasicoherent subsheaf

of OX .

On each affine open subscheme Spec(R) ∼= U ⊂ Spec(X), we have that I|U
corresponds to the sheaf of OR-modules associated to an ideal of R. So a sheaf of

ideals can be viewed as a compatible family of ideals in the family of rings that

glue to X.

Theorem 4.14. The map sending each closed subscheme to the kernel of the

associated map OX → f∗OZ yields a bijection between closed subschemes of X

and sheaves of ideals of X.

Proof. First, note that f∗OZ is quasicoherent, as it is locally the sheaf associ-

ated to the module OX(U)/I for some ideal I. Since kernels of quasicoherent

sheaves are quasicoherent, we see that this map is well defined, and on each

affine yields an ideal subsheaf of OR. Conversely, given a sheaf of ideals, to ob-

tain the corresponding closed subscheme, we take the closed subset Z of X on

which every section of I vanishes, where defined. The sheaf of rings is given by

OX/I(Z ∩ U) = OX/I(U), noting that OX/I(U) is canonically isomorphic to

OX/I(V ) if U ∩ Z = V ∩ Z, so this is well defined. This yields locally ringed
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space, and by checking locally, we have that this is the inclusion of the closed

subscheme Spec(R/I) ⊂ Spec(R).

Returning to the situation of Dedekind schemes, we may now give a canonical

bijection between negative divisors on X with two other classes of objects.

Definition 4.15 (Divisor of a closed subscheme). Let X be a Dedekind scheme.

To any closed subscheme Z of X, we associate a divisor div(Z) of X by the

following procedure. The ring OZ |U∩Z is given as a quotient of OX |U by an ideal

I|U on each affine open set U , and since I|U =
∏n

i=1 p
ei
i , we give the divisor

div(Z)|U on U as
∑n

i=1−eiPi. These local assignments of data are compatible

with restriction, hence glue to the divisor div(Z).

Intuitively, we are just globalising the affine correspondence of nonzero ideals

and finite nonegative sums of prime ideals of Theorem 2.48. It should be noted

that we are introducing a sign change compared to the naive bijection between

these objects. This will be necessary to avoid unwelcome sign changes later.

Proposition 4.16. The previous construction gives a bijection between negative

divisors on X and closed subschemes of X.

Proof. Any closed subscheme is determined by its values on each affine open U ,

so it remains to construct a closed subscheme for any negative divisor D. This

is equivalent by Theorem 4.14 to giving the corresponding quasicoherent sheaf of

ideals, for which we take

L(D)(U) :=
⋂
P∈U

OX,P · p−vP (D) = {x ∈ K(X)|vP (x) + vP (D) ≥ 0 for all P ∈ U}

This is quasicoherent since on each affine U , it is just the sheaf associated to

the ideal I =
∏

P∈U p−vP (D).

So on a Dedekind scheme, we have canonical bijections between the following

three objects.

• Negative divisors on X.

• Nonzero sheaves of ideals on X.

• Proper closed subschemes of X.

We will now be considering a more restricted class of sheaves over our Dedekind

schemes, a generalisation of finitely presented modules.
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Definition 4.17 (Coherent sheaf on a Dedekind scheme). A quasicoherent sheaf

F of OX-modules over a Dedekind scheme X is coherent if for all affines U ⊂
X, F|U is finitely generated as an OX |U -module. Equivalently, that the local

presentation of Remark 4.12 can be taken to be finite.

Remark 4.18. This is not the most general definition of a coherent sheaf, but

is equivalent to the general definition found in [Sta19a] for any scheme that is

locally Noetherian.

One may show that for a Dedekind scheme X, or more generally a locally

Noetherian scheme, that the category of coherent sheaves is closed under all the

constructions 4.6, so forms a full abelian subcategory of all quasicoherent sheaves

on X.

We will be extensively considering coherent sheaves of an especially nice form,

those coherent F that are locally free as OX-modules.

It would be intellectually dishonest to not discuss the geometric intepretation

of locally free sheaves, even though we will work entirely algebraically. Consider

a real vector bundle P over a manifold M . The sheaf of sections of P is a module

over the sheaf of continuous real valued functions on M , and one may without

difficulty show that this sheaf is locally free. The suitable generalisation of this

holds for our schemes, one may show that with the suitable definition of a vector

bundle on scheme, we have a bijection between vector bundles on X and locally

free sheaves of OX-modules on a scheme X, see [Sta19b]. We will not use this

interpretation explicitly at any point, but we encourage the geometrically minded

reader to keep this in mind.

Lemma 4.19. A coherent sheaf F on a Dedekind scheme X is locally free if and

only if it has each stalk FP free over OX,P .

Proof. Since this question is local, we may assume X is affine. So we need to

show that a finitely generated module M over a Noetherian ring R is locally free

if and only if its localisations MP are free. Let {ei}ni=1 be a basis of MP . By

clearing potential denominators, we have that ei are elements of R[1/f ] ⊗R M .

So we have a map R[1/f ]n → R[1/f ]⊗RM which induces an isomorphism when

localised at P . Since R is Noetherian, the kernel and cokernel of this map are

finitely generated R[1/f ]-modules that become 0 when localised at P . So there

exists a ∈ R such that a annihilates the kernel and cokernel of this map, so this

map is an isomorphism once tensored with R[1/a]. So R[1/f, 1/a] ⊗M is free

over R[1/f, 1/a], and the claim follows.
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4.1 Functors between sheaf categories

Given a finite morphism of Dedekind schemes (f, f×) : (X,OX) → (Y,OY ), we

have two primary functors relating the categories of coherent sheaves over each.

Remark 4.20. These functors exist for more general schemes, and for more

general maps, but as we will principally be dealing with Dedekind schemes, we

will work in this lower level of generality. We will try to indicate where the general

theory significantly diverges from this special case.

Our first functor is the pushforward f∗. We may naturally endow the push-

forward of a coherent sheaf in the sense of definition 2.6 with an OY -module

structure.

Definition 4.21. Let f : X → Y be a finite morphism of Dedekind schemes.

The pushforward functor f∗ : Coh(X)→ Coh(Y ) is given on a sheaf F by

f∗F(U) = F(f−1U)

on open sets, with the restriction maps f∗F(U) → f∗F(V ) = Resf
−1U
f−1V . The

OY -module structure is given by x · (v) = f×(x)v.

We now need to check that this sheaf of OY -modules is coherent. First, let’s

note that if F → G → K is exact, then so is f∗F → f∗G → f∗K since this

sequence is exact on the open cover Ui, since f−1Ui are affine from corollary 3.6.

So by applying the functor f∗ to a local presentation of F on U , it suffices to

show that f∗OX is coherent as a sheaf of OY -modules. Since we have an affine

open cover f−1Ui of X, it suffices to check the affine case. Let R, S be rings,with

M an R-module, f ∈ R and injective ring morphism R → S. If ResRS is the

restriction functor R-Mod→ S-Mod, then we have a natural isomorphism

ResRS M ⊗S S[1/f ] ∼= ResRS (M ⊗S R[1/f ]).

This gives an isomorphism f∗OR
∼= ResRS R ⊗S OS of presheaves on Spec(S),

which gives that f∗OR is given on affines U as the sheaf associated to the module

ResRS OR(U), which is finitely generated since our map is finite.

Note that on affines, and on stalks, this functor is given by restriction of

modules.

Remark 4.22. This functor is defined for most morphisms of schemes, but only

on the level of quasicoherent sheaves. The fact that our map has a cover of affine

open sets mapping to affines is just a convienience we used in the proof, but the

fact that it preserves coherence relies critically on the finiteness of our map.
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Our second functor f ∗ is the pullback, analogous to our inverse image functor

of definition 2.8. Recall from corollary 3.38 that finite morphisms of Dedekind

schemes are open maps.

Definition 4.23. Given a finite morphism of Dedekind schemes f : X → Y , we

define the pullback f ∗F to be the coherent sheaf of OX-modules given by the

sheafification of the presheaf

f̃ ∗F(U) := OX(U)⊗OY (f(U)) F(f(U))

Here OX acts on the left factor, and the OY (f(U)) algebra structure on OX(U)

is given by the composition

OY (f(U))→ f∗OX(f(U)) = OX(f−1(f(U)))
Res−−→ OX(U).

Let’s check that this is a coherent sheaf. First, note directly from the definition

that f ∗OY
∼= OX . This functor is locally given by taking the tensor product on

affines, then sheafifying. Since the tensor product is right exact on modules, it

preserves local presentations, so preserves coherence.

Note that on affine open sets of the form f−1(U) in X for U open affine in Y ,

this map is given by taking the tensor product as modules, and is also given by

this on stalks.

Remark 4.24. In general, for maps that arent open, we need to take a colimit

similarly to the definition of the inverse image sheaf.

Theorem 4.25. For a finite map f : X → Y of Dedekind schemes, we have an

adjunction

Coh(Y ) Coh(X)
f∗

f∗
.

Furthermore, the canonical morphism defines an isomorphism of sheaves

f∗Hom(f ∗F ,G) ∼= Hom(F , f∗G).

Proof. Note that for a coherent sheaf F , we have that f ∗f∗F is the sheafification

of the presheaf OX(U) ⊗OY (f(U)) F(f−1f(U)), and f∗f
∗G is the sheafification of

the presheaf OX(f−1(U))⊗OY (U) G(U).

The unit of this adjunction is given by the composition of the natural map of

presheaves
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G(U)→ OX(f−1(U))⊗OY (U) G(U)

s→ 1⊗ s

and the sheafification map to f∗f
∗F .

The co-unit of this adjunction is given by the unique sheafification-induced

map associated to the presheaf morphism

OX(U)⊗OY (f(U) G(f−1f(U))→ G(U)

a⊗ s→ a · Resf
−1fU
U (s).

To check the triangle identities, we can check that the composities are equalities

on stalks. So let B = OX,Q, A = OY,f(Q). we see that f ∗F → f ∗f∗f
∗F → f ∗F is

given on the stalk at Q as as

B ⊗A FQ → B ⊗A B ⊗A FQ → B ⊗A FQ.

a⊗ s→ 1⊗ a⊗ s→ 1 · a⊗ s = a⊗ s

For the other triangle identity, let C = (f∗OX)P . Then f∗G → f∗f
∗f∗G → f∗G is

given by

f∗GP → C ⊗A f∗GP → f∗GP .

s→ 1⊗ s→ 1 · s = s

The second assertion follows by noting the adjunction preserves the OY -module

structure that can naturally be given on both sides of hom(f ∗F ,G) ∼= hom(F , f∗G).

These two functors exist in almost complete generality for morphisms of

schemes, but now we will consider a third functor, much more specific to our

situation. This functor f ! is a right adjoint to f∗.

Since this is more involved to construct than the previous functors, we will

first define it on affines, then glue using Theorem 4.5.

Definition 4.26. Given a finite morphism f : Spec(B) → Spec(A) of affine

Dedekind schemes, and M a finitely generated A-module, we define

f !
BM := homA(ResBA B,M).

That is, f !
BM is the A-module morphisms from B to M , with B action given by

multiplication on B.
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Note that since B is finite over A, f !
BM is also finitely generated.

This construction yields a functor from finitely generated A-modules to finitely

generated B-modules.

Theorem 4.27. For a finite morphism f : Spec(B)→ Spec(A) of affine Dedekind

schemes, we have an adjunction

Coh(Spec(B)) Coh(Spec(A)).
f∗

f !B

Proof. We define the unit as the map N → f !f∗N that takes an element m of

M to the B linear map 1
cm−→ m, and inteprets this as an A linear morphism

ResBA B → M . For the co-unit, any A linear morphism ResBA B → N maps 1 to

an element of N , giving a natural evaluation map f∗f
!N → N . To verify the

triangle identities, we just need to note that the following compositions are both

the identity.

m→ cm → cm(1) = m

φ→ cφ → cφ(1) = φ.

We aim now to construct the functor f ! for non affine Dedekind schemes, by

glueing these locally defined f !. To do this, we will need this construction to

behave well under localisation.

Lemma 4.28. Let f : Spec(B) → Spec(A) be a finite morphism of affine

Dedekind schemes, and let U be an open affine in Spec(A). Let

V = f−1(U), B′ = OB(V ), A′ = OA(U).

Then for any finitely generated A-module M , we have a canonical isomorphism

B′ ⊗B f !
B(M)

γB
B′−−→ f !

B′(A
′ ⊗AM).

This isomorphism is compatible with restriction, if we have affine inclusions

U ′′ ⊂ U ′ ⊂ U , with corressponding ring B ⊂ B′ ⊂ B′′, we have γB
′

B′′ ◦ γBB′ = γBB′′.

Proof. We have the natural isomorphism

B′ ⊗B homA(B,M) ∼= homA(B′,M)
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given by (1⊗ φ)(b′) = b′φ(1), extending by B′ linearity. Composing, we obtain a

morphism

homA(B′,M)→ homA′(B
′, A′ ⊗AM).

This map is injective, if φ is in the kernel, and φ(s) = m, then m is annihilated

by some fs ∈ A which becomes invertible in A′. By finite generation, we may

choose an F ∈ A which annihilates everything in the image of φ. But F acts

invertibly on B′, so since φ(Fs) = 0 for all s ∈ B′, we have φ = 0.

Now let’s check that this is surjective. Given γ : B′ → A′⊗AM , then picking

a generating set {si}ni=1 of B′, we have γ(si) = mi

fi
, so letting F =

∏n
i=1 fi, we

have Fγ has image contained in M , so 1
F
· Fγ shows that the map is surjective,

since 1
F
∈ B′.

For the compatibility, note that γBB′(1 ⊗ φ) = iBB′ ◦ φ, where iBB′ : B → B′ is

the inclusion.

At this point, we claim that for any Dedekind scheme X, there exists an affine

open cover {Ui}i∈I of Y such that each intersection Ui ∩ Uj is also affine. This

holds since our schemes are seperated in the sense of [Har77], and while this is

implied by our definition 2.54 of seperatedness, the author could not find a proof

of this covering fact using the material solely in this thesis.

We will now use such a cover {Ui}i∈I of Y to construct the functor f ! for a

finite morphism of Dedekind schemes f : X → Y .

Let Vi := f−1(Ui) be the corresponding affine cover ofX. DefineBi := OX(Vi),

noting that it is the integral closure of Ai := OY (Ui) in K(X). Also let

Bi,j := OX(Vi ∩ Vj), Ai,j := OY (Ui ∩ Uj).

Given a coherent sheaf F on Y , we express it as its family of modules with

descent data F = (Mi, Ai,j ⊗Ai
Mi

νi,j−−→ Ai,j ⊗Aj
Mj).

Applying the functor f !
Bi,j

and composing with the natural isomorphisms of

Lemma 4.28, we obtain a sheaf on X given by the glueing of the following data

(f !
Bi
Mi, Bi,j ⊗Bi

f !
Bi
Mi

γ−1νi,jγ−−−−−→ Bi,j ⊗Bj
f !
Bj
Mj)

These isomorphisms are valid descent data by the compatibility part of 4.28.

We aim to define the unit and co-unit of the adjunction in terms of these

presentations of our sheaves as modules and descent data. We may apply the

unit and co-unit of Theorem 4.27 on the modules, so it remains to check that

these respect the natural descent data on both sides.



62 CHAPTER 4. SHEAVES OF MODULES

So if our sheaves are

F = (Mi, Ai,j ⊗Ai
Mi

νi,j−−→ Ai,j ⊗Aj
Mj)

on Y and

G = (Ni, Bi,j ⊗Bi
Ni

µi,j−−→ Bi,j ⊗Bj
Nj)

on X, then we would need to check the commutativity of the following two

diagrams.

Bi,j ⊗Bi
Ni Bi,j ⊗Bj

Nj

Bi,j ⊗Bi
f !
Bi

ResBi
Ai
Ni Bi,j ⊗Bj

f !
Bj

Res
Bj

Aj
Nj

µi,j

1⊗η 1⊗η

Ai,j ⊗Ai
ResBi

Ai
f !
Bi
Mi Ai,j ⊗Aj

Res
Bj

Aj
f !
Bj
Mj

Ai,j ⊗Ai
Mi Ai,j ⊗Aj

Mj

1⊗ε 1⊗ε
νi,j

Where the unlabelled maps are the compositions of the maps of descent data of

the functors. This verification is a long simple unfolding of definitions, which we

therefore omit.

Noting that the adjunction triangles are verifiable on the level of affines, we see

that this functor is a right adjoint to f∗. Since adjoints are unique up to unique

isomorphism, we see that this functor is independent of the cover we chose, and

we have our desired adjunction.

Theorem 4.29. For a finite morphism of Dedekind schemes f : X → Y , the

pushforward f∗ on coherent sheaves admits a right adjoint f !.

Coh(X) Coh(Y )
f∗

f !

Remark 4.30. This right adjoint f ! of f∗ exists in much greater generality than

finite morphisms of schemes, after suitably enlarging our category Coh(X) and

Coh(Y ). To the author’s knowledge however, even though this functor exists in

much greater generality, a general concrete description of it is not known, see

[Har66].
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4.2 The class group and the picard group

Recalling definition 3.42, the class group Cl(X) of X is given as the quotient of

Div(X) by the principal divisors of the form div(f). In this section we will define

another group based on locally free sheaves, which for Dedekind schemes will be

canonically isomorphic to Cl(X).

Definition 4.31 (Invertible sheaf). A sheaf F of OX-modules on a scheme X is

invertible if there exists another sheaf G and isomorphisms F⊗G ∼= OX
∼= G⊗F .

Invertible sheaves on Dedekind schemes also admit a more concrete descrip-

tion.

Lemma 4.32. For a sheaf F of OX modules on a Dedekind scheme X, the

following are equivalent.

i) F is invertible.

ii) F is locally free of rank 1.

Proof. i) implies ii) We follow the proof of this result given at [Sta19c].

Given an isomorphism γ : OX → F ⊗ G, on U we have locally that γ(1U) =∑n
i=1 ai ⊗ bi for some ai ∈ F(U), bi ∈ G(U). So consider the composite map

F|U → F|U ⊗F|U ⊗ G|U → F|U

given by

s→
∑
i

s⊗ ai ⊗ bi →
∑
i

γ−1(s⊗ ai)bi.

This is an automorphism of F|U , and factors as F|U → OX |nU → F|U , so F is a

direct summand of a coherent sheaf, hence is coherent. Since its stalks are finite

free modules, by Lemma 4.19 F is seen to be locally free.

ii) implies i)

If F is locally free of rank 1, then the sheaf Hom(F , OX) is an inverse of F .

To see this, note the natural evaluation maps

F ⊗OX
Hom(F , OX)→ OX

are isomorphisms on stalks, since stalkwise these are simply the pairing of a free

rank one module with its dual.

Definition 4.33 (The Picard group). The picard group of a scheme X is the

abelian group Pic(X) of isomorphism classes of invertible sheaves on X.
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We will now begin relating divisors to invertible sheaves.

Definition 4.34 (Divisor associated to a subsheaf ofK(X)). LetX be a Dedekind

scheme. To any invertible subsheaf L of K(X), we may associate a divisor div(L)

as follows. The stalk LP is a OX,P submodule of K(X)P = K(X), and is therefore

of the form πaPOX,P for a uniformiser π of OX,P , for some aP ∈ Z. We define

then define div(L) as

div(L) =
∑
P∈X

−aP · P.

Remark 4.35. This is a well defined divisor. Any invertible subsheaf of K(X) is

free over an open set U , so we have an x ∈ K(X) such that LP = (x) ⊂ OX,P for

all P ∈ U . So away from the finite set div(x), we have that LP = OX,P . Thus,

the set of points where aP 6= 0 is finite.

Definition 4.36 (Subsheaf of K(X) associated to a divisor). For any divisor

D =
∑

P∈X aP · P , we have an invertible subsheaf L(D) of K(X) given by

L(D)(U) =
⋂
P∈U

p−aPOX,P = {x ∈ K(X)|vP (x) + vP (D) ≥ 0 for all P ∈ U} .

This is invertible since the K(X) multiplication map L(−D)⊗OX
L(D)→ OX

shows that L(−D) is an inverse.

Note that the operations are mutual inverses, and we obtain a bijection be-

tween divisors and invertible subsheaves of K(X).

We have partial orders, group laws, and notions of equivalence on both of

these sets, and these are all preserved under this identification.

Proposition 4.37. For two divisors D, D′ on X, we have:

i) D ≤ D′ if and only if L(D) ⊂ L(D′) as subsheaves of K(X).

ii) L(D)⊗OX
L(D′) ∼= L(D +D′)

iii) L(D) ∼= L(D′) if and only if D = D′ + div(f) for some f ∈ K(X).

Proof. The first proposition is immediate from the definitions, and for ii), we

have a natural injective morphism L(D) ⊗ L(D′) → K(X) given by restricting

the multiplication map

K(X)⊗K(X)→ K(X).

To identify its image, we may pass to stalks and observe that the corresponding

divisors add.
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For iii), given an isomorphism φ : L(D) → L(D′), we may tensor it with

the constant K(X) sheaf to obtain the following diagram, where all maps are

isomorphisms.

L(D)⊗K(X) K(X)

L(D′)⊗K(X) K(X)

φ⊗id

So φ arises as the restriction of an isomorphism K(X)→ K(X), which is multi-

plication by a nonzero element f of K(X), giving the result upon observing the

effect on the corresponding divisors.

Lemma 4.38 (Invertible sheaves embed in the constant sheaf). Every invertible

sheaf L on X is isomorphic to a subsheaf of K(X).

Proof. Since L is invertible, it is locally free of rank 1, so its stalk Lxgen over

the generic point xgen is a one dimensional vector space over K(X). So the

defining morphisms L(U) → Lgen yield an injection of L into a constant Lgen

sheaf. Composing this map with any isomorphism Lgen ∼= K(X) gives the desired

embedding.

Remark 4.39. This process is not canonical, we arbitrarily chose an isomorphism

Lgen ∼= K(X), and indeed we should not think of abstract invertible sheaves as

being subsheaves of K(X).

Corollary 4.40 (The Picard group is the class group). Embedding an invertible

sheaf into K(X) then taking its associated divisor in the class group Cl(X) yields

a well defined isomorphism of groups

Pic(X)→ Cl(X).

Proof. This map is well defined by Lemma 4.38 and is a bijective group homo-

morphism by Proposition 4.37.

Remark 4.41. For this proof, all we needed was a good correspondence be-

tween divisors and invertible subsheaves of K(X). Taking divisors to be sums

of codimension one closed subschemes of X, this correspondence can hold more

generally for higher dimensional schemes. For sufficiently nice schemes X, this

same isomorphism holds, with an analagous proof. To see this result in a higher

dimensional setting, see proposition 2.6.15 of [Har77].
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4.3 Modules over a Dedekind scheme

Definition 4.42 (Grothendieck group of an abelian category). Given an abelian

category C, we define the Groethendieck group of C, denoted K0(C), to be the

free abelian group on the objects of C, modulo the relations X+Y −Z whenever

we have a short exact sequence

0→ X → Z → Y → 0.

By equating the positive and negative parts of such a formal expression, each

element of K0(X) has a representative of the form [X]− [Y ] for objects X, Y in

C.

Remark 4.43. If C is monoidal, then K0(C) naturally carries the structure of a

ring, but we won’t be utilising this ring structure.

We may use this construction to give another interpretation of divisors on

our Dedekind scheme X, as the Grothendieck group of the category of coherent

torsion sheaves.

Definition 4.44. A coherent sheaf T on X is torsion if for an affine open cover

Ui, T |Ui
is a torsion module over OX(Ui). Coherent torsion sheaves on X form a

full abelian subcategory of Coh(X), which we denote byCohTor(X).

Definition 4.45 (Torsion sheaf associated to a negative divisor). For a point

P in X, and a positive integer n ∈ N, we have the associated map of sheaves

L(−nP )→ OX , and the cokernel of this map is a coherent torsion sheaf denoted

T (−nP ). Explicitly, we have

T (−nP )(U) = OX,P/p
n

if P ∈ U , and 0 else.

We define T (−D) for any effective divisor D on X as the cokernel of the inclusion

L(−D)→ OX .

These T (−D) give us examples of coherent torsion sheaves on X, and after

taking direct sums, yield the whole category CohTor(X).

Proposition 4.46. A coherent torsion sheaf T on X a Dedekind scheme can be

expressed uniquely as a direct sum

T =
⊕
P∈X

⊕
i

T (−nP )ei,P .

Where ei,P ∈ N, and are zero for all but finitely many pairs (i, P ).
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Proof. There exists an affine open U , and a nonzero f ∈ OX(U) with f.s = 0 for

all s ∈ T (U). Passing to an open U ′ away from the zeros and poles of f , we see

that T (V ) = 0 if V ⊂ U ′. Let P1, ...Pn be the points contained in X \ U ′, and

pick open sets Ui that contain Pi, but not Pj for j 6= i, and set U0 = U ′.

These {Ui}ni=0 are an open cover of X, so we have the following equaliser

T (V )→
n⊕
i=0

T (V ∩ Ui) ⇒
n⊕

i,j=0

T (V ∩ Ui ∩ Uj).

Since T (V ∩ Ui ∩ Uj) = 0 unless i = j, we see that

T (V ) ∼=
n⊕
i=0

T (V ∩ Us).

If V contained a single Pi only, we see that T (V ) ∼= T (V ∩ Ui), so we see for U ′′

containing Pi only, T (U ′′) is isomorphic to the stalk TPi
of T at P . Since each

OX,P is a principal ideal domain, we have a decomposition

TP ∼=
m⊕
n=1

(OX,P/p
n)en

So T (V ) is isomorphic to the direct sum of the stalks of T at the Pi contained

in V , giving the desired decomposition.

Remark 4.47. Note that from this description, we see that every coherent torsion

sheaf admits a surjection from On
X , since each T (−nP ) does.

Corollary 4.48. The mapping T (−nP )→ nP extends to an isomorphism

K0(CohTor(X)) ∼= Div(X).

Proof. Note that we have a short exact sequence of OX,P -modules

0→ pk/pk+1 → OX,P/p
k+1 → OX,P/p

k → 0.

Identifying pk/pk+1 with OX,P/p under multiplication by πk for π a uni-

formiser, we obtain the short exact sequence of torsion sheaves

0→ T (−P )→ T (−nP )→ T (−(n− 1)P )→ 0.

Since both the Grothendieck group and the divisor group are direct sums over

the points in X by Proposition 4.46, the result follows.
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Let us now consider the category of all coherent sheaves over X a Dedekind

scheme, not just the torsion sheaves.

Theorem 4.49 (Identifying K0(Coh(X))). For X a Dedekind scheme, we have

a canonical isomorphism

K0(Coh(X))
ch−→ Z⊕ Pic(X)

as abelian groups, given on invertible sheaves by L→ (1, [L]).

We will prove this theorem in a series of steps. First, we will show that

arbitrary coherent sheaves aren’t too far from locally free sheaves.

Theorem 4.50. If F is a coherent sheaf on a Dedekind scheme X, then there

exists an invertible sheaf L such that F ⊗L admits a surjective map from (OX)n.

Proof. We will prove this by first showing that any section s ∈ F(U) can be

extended to a global section s̃ of F ⊗ L for some invertible sheaf L with L|U ∼=
OX |U , such that s̃|U is the image of s under the isomorphism F|U ∼= F|U ⊗ L|U .

We first consider the torsion subsheaf of F , the subsheaf of sections that have

nonzero annihilator. This is the subsheaf TF given by:

TF(U) = {s ∈ F(U)| there exists a nonzero f ∈ OX(U) such that f.s = 0}.

This sheaf is precisely the kernel of the map of quasicoherent sheaves F →
F ⊗K(X). Therefore it is a quasicoherent subsheaf of a coherent sheaf, hence a

coherent sheaf since our schemes are Noetherian.

It is also torsion, so by 4.47, admits a surjection from On
X for some finite

n ∈ N.

Now if s ∈ F(U) is not annihilated by any f ∈ OX(U), we can without loss

of generality assume U is affine, and we will construct an invertible sheaf L as

follows:

Let se be the image of s in the stalk over the generic point, Fgen. Pick an

open affine cover Ui of X, and on each Ui pick a ti ∈ F(Ui), di ∈ OX(Ui) such

that in Fgen we have

ti = dis
e.

We may take U1 = U , and d1 = 1. We see therefore that the section djti− ditj ∈
F(Ui ∩ Uj) is annihilated by some ci,j ∈ OX(Ui ∩ Uj). From the sheaf property,

we may assume that each of these ci,j are all nonzero. Pick a divisor Ds such that

Ds is greater than each divisor of the form div(ci,jdjdi).
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Now consider on each Ui the sections of L(Ds)⊗F given by

1

di
⊗ ti.

On the intersections Ui ∩ Uj, we have

1

di
⊗ti =

ci,jdj
ci,jdjdi

⊗ti =
1

ci,jdjdi
⊗ci,jdjti =

1

ci,jdjdi
⊗ci,jditj =

ci,jdi
ci,jdjdi

⊗tj =
1

dj
⊗tj.

These sections therefore glue to a global section s̃ of L(Ds)⊗F . We see that

s̃|U = s, giving the desired extension.

Picking a finite affine cover Ui of X, for each i we can pick s1,i, ..sn,i that

together generate the cokernel of TF → F over Ui. Taking a divisor Dsj,i ≤ D for

all i, j, and summing the maps OX → L(D)⊗F associated to the global section

si,j, we obtain a morphism

ON
X → L(D)⊗F .

By construction, this generates the image of F in F ⊗K(X). So now picking a

surjection from OM
X onto the torsion subsheaf of L(D)⊗F , we may sum these to

obtain the desired surjection onto L(D)⊗F .

Corollary 4.51. Every coherent sheaf F on a Dedekind scheme X has a two

step resolution by locally free sheaves. That is, for any coherent F on X, there

exists locally free V1 and V2, and a short exact sequence

0→ V1 → V2 → F → 0.

Proof. Tensor the surjection On
X → F ⊗ L with L−1 an inverse of L to obtain

a surjection from a locally free sheaf (L−1)
n

to F , and note that the kernel is a

coherent subsheaf of a locally free sheaf, so its stalks are free of finite rank, hence

this kernel is locally free by Lemma 4.19.

Definition 4.52. The rank of a coherent sheaf F over X is the dimension of

Fgen as a vector space over K(X), denoted rk(F).

Observe that the rank of F is zero if and only if F is torsion. The map

F → rk(F) descends to a map from K0(X) to Z, since taking the stalk at xgen is

exact, and vector space dimension is additive in short exact sequences.

This will be the Z valued component of the map ch, and now we will define

the Pic(X) valued component.
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Definition 4.53 (Determinant of a locally free sheaf). Given a locally free sheaf

F on X, the determinant det(F) of F is the invertible sheaf obtained by taking

the top exterior power “locally” on F . That is, take an open affine cover Ui on

which F is free, and take the top exterior power on each, and glue using the

compatibility of exterior powers and localisation.

For a locally free sheaf F , we define the dual locally free sheaf F∗ to be

Hom(F , OX), and we have the following compatibility result.

Proposition 4.54. As invertible sheaves on X, we have a canonical isomorphism

det(Hom(F , OX)) ∼= det(F)−1

Proof. We have the canonical pairing of top wedge powers of a free module, and

globalising this yields the desired natural isomorphism

det(F)⊗ det(Hom(F , OX))→ OX .

Lemma 4.55 (Determinant of a short exact sequence). For a short exact sequence

of locally free sheaves, 0→ F1 → F2 → F3 → 0 we have a canonical isomorphism

of invertible sheaves.

det(F1)⊗ det(F3) ∼= det(F2)

Proof. For a short exact sequence of free R-modules

0→M1 →M2 →M3 → 0

we have the canonical isomorphism det(M1) ⊗ det(M3) → det(M2), on pure

alternating tensors as (v1∧v2∧...∧vn)⊗(w1∧w2∧...∧wm)→ v1∧..∧vn∧w1∧..∧wm.

This is natural, and compatible with localisation, hence glues to an isomorphism

det(F1)⊗ det(F3) ∼= det(F2) of locally free sheaves.

Definition 4.56 (Determinant of a coherent sheaf). Let 0 → G2 → G1 → F →
0 be a two step locally free resolution of F , a coherent sheaf on a Dedekind

scheme X. The determinant det(F) of F is defined to be the isomorphism class

[det(G1)]− [det(G2)] of det(G1)⊗ det(G2)−1 in the Picard group Pic(X).

Lemma 4.57. This isomorphism class is independent of the resolution chosen.
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Proof. First, note that the category of locally free sheaves on X is closed under

direct sums and kernels, so is closed under taking pullbacks. Consider then the

following diagram, where each Pi,j is defined to be the appropriate pullback.

0 0 0

0 P2,2 P1,2 V2 0

0 P1,2 P1,1 V1 0

0 G2 G1 F 0

0 0 0

Each row and column of this diagram is a short exact sequence, as can be

verified by a simple diagram chase.

From this, we see that

[det(V1)]− [det(V2)] =[det(P1,1)]− [det(P1,2)] + [det(P2,2)]− [det(P1,2)]

=[det(G1)]− [det(G2)].

So the class in Pic(X) is independent of the choice of resolution.

Thus we obtain a map F → [det(F)] from coherent sheaves to Pic(X). We

claim that this map factors through K0(X).

Given a short exact sequence of coherent sheaves 0 → F1 → F2 → F3 → 0,

and surjection V → F2 from a locally free sheaf V , we obtain the following

diagram.

0 0 0

0 P3 P1 0 0

0 P2 V F3 0

0 F1 F2 F3 0

0 0 0

∼
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Where once more, the Pi are pullbacks, and each row and column is a short exact

sequence. From this, we see that [det(F2)] = [det(F1)]+ [detF3], since both sides

are the class of [det(V )]− [det(P1)].

Thus we now have a well defined additive map K0(X)→ Pic(X).

Note that for an effective divisor D, taking the determinant of the short exact

sequence

0→ L(−D)→ OX → T (−D)→ 0

gives that

det(T (−D)) = [L(−D)−1] = [L(D)].

Taking the direct sum of these two maps yields the desired morphism

K0(X)
ch−→ Z⊕ Pic(X).

Let’s now check that this is an isomorphism. This map is easily surjective, the

formal difference (n− 1)[OX ] + [L] maps onto (n, [L]).

To show that this map is injective, it suffices to show that it has no kernel,

so we need to show that if rk(F) = rk(G), and det(F) = det(G), then [F ] = [G]

in K0(X). We will induct on the rank of such an F , noting that it is finite by

coherence assumption.

For the base case, if the rank is 0, then F and G are torsion, so they are

equivalent to T (D) and T (D′) for divisors D,D′ in the Grothendieck group of

torsion coherent sheaves by corollary 4.48. Then, we have

[L(−D)] = det(T (D)) = det(T (D′)) = [L(−D′)].

So we have that L(D) is isomorphic to L(D′), so since [T (D)] = [OX ] − [L(D)],

we have that [T (D)] = [T (D′)], as desired.

Now for representatives F , G in K0(X) of nonzero rank, by tensoring an

injective map OX → F ⊗ L with L−1, we obtain an injective map from L → F
and similarly obtain an injective L′ → G. But for any two L,L′ we may find an

L′′ mapping injectively to both of them, so we may assume there exists invertible

L′′ with an injective map to both F and G. But then quotienting by the image of

L′′ results in a coherent sheaf of strictly smaller rank, so [F ] = [G] by induction,

completing the proof.

Remark 4.58. We called the map of Theorem 4.49 ch since it is an algebraic ver-

sion of the chern character from complex K-theory to rational singular cohomol-

ogy. This theorem really is the tip of an iceberg beyond the author’s knowledge,

the interested reader may read more at [Ful84].
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4.4 Pushforward on divisors and sheaves

Since the pushforward f∗ on coherent sheaves is locally given by restriction, it

maps coherent torsion sheaves to coherent torsion sheaves. This induces a natural

map of their Grothendieck groups. We now know that these are just the groups of

divisors, and we may recognise this induced map as the pushforward on divisors.

Proposition 4.59. The pushforward on Grothendieck groups is compatible with

the pushforward on divisors. That is, for a finite morphism f : X → Y of

Dedekind schemes, the following diagram commutes.

K0(CohTor(X)) K0(CohTor(Y ))

Div(X) Div(Y )

∼

f∗

∼

f∗

Proof. In view of the direct sum decompositon of both sides, it suffices to show

that this map on T (−Q) agrees with the norm map for points Q/P . Since OX,Q/q

is an fQ/P dimensional vector space over OY,P/p, this follows at once.

Taking the pushforward of invertible sheaves then the determinant yields a

“pushforward” operation on Picard groups, and we have the following description

of this operation.

Proposition 4.60. For a finite morphism f : X → Y of Dedekind schemes, we

have an isomorphism

det(f∗L(D)) ∼= det(f∗OX)⊗ L(f∗D).

Proof. First, for an effective divisor D we have the following short exact sequence.

0→ L(−D)→ OX → T (−D)→ 0 (4.1)

Note that for any torsion sheaf T , and any line bundle L, we have an isomor-

phism T ⊗L ∼= T , since the stalks are unchanged. So tensoring sequence 3.1 with

L(D) we obtain

0→ OX → L(D)→ T (−D)→ 0 (4.2)

Now for an arbitrary divisor D′, express D′ = D′′−D for D,D′′ effective divisors,

and tensor sequence 3.1 with L(D′′) to obtain

0→ L(D′′ −D)→ L(D′′)→ T (−D)→ 0. (4.3)
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So applying f∗, then the determinant to these sequences yields

det(f∗L(D′′ −D))⊗ L(f∗D) ∼=1.3 det(f∗L(D′′)) ∼=1.2 det(f∗OX)⊗ L(f∗D
′′)

From which rearranging terms yields the result.

Now we will interpret the different and discriminant of chapter 3 our new

tools. Let f : X → Y be a finite morphism of Dedekind schemes.

Proposition 4.61. The class of the different divisor DX/Y in K0(CohTor(X)) is

given by the cokernel of

Tr!
X/Y : OX → f !OY

where Tr!
X/Y is the adjoint of the sheaf trace map TrX/Y .

Proof. It suffices to check this at points, so at a point Q, the cokernel of this map

is generated by a single element, as (f !OY )Q is free of rank 1 as an OX,Q-module.

We may realise homOY,P
(OX,Q, OY,P ) as a subset of K(X) via the nondegeneracy

of the trace form. So we see that the class of this cokernel at Q is given by the

smallest n such that if

Tr(xb) ∈ OY,P for all b ∈ OX,Q, then πnx ∈ OX,P .

This is then seen to be equivalent to the definition of the different at Q given in

defintion 3.54.

We see therefore that the different measures how far the trace form is from

being a perfect pairing on the locally free OY -module f∗OX .

We are now in the position to prove Theorem 3.58, which we recall.

Theorem 4.62. The pushforward of the different divisor DX/Y is the discrimi-

nant divisor ∆X/Y .

f∗DX/Y = ∆X/Y .

Proof. Applying the pushforward to

0→ OX → f !OY → T (−DX/Y )→ 0

gives the short exact sequence

0→ f∗OX → f∗f
!OY → f∗T (−DX/Y )→ 0.

Locally on a cover {Ui}i∈I we may pick bases of the free modules f∗OX(Ui)

and f∗f
!OY (Ui) over OY (Ui) such that the map is diagonal with respect to these
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bases. From this, locally we see that the class of the cokernel is the direct sum of

the OY,P/di where di are the diagonal elements of our matrix of Tr!
X/Y , which is

seen to be equivalent in K0(CohTor(Y )) to OY,P/ det(Tr!). This determinant was

the discriminant as originally defined. So using the isomorphism of Div(Y ) and

K0(CohTor(Y )), we have ∆X/Y = f∗DX/Y .

We end this section with the observation that the discriminant has a canonical

square root.

Proposition 4.63. As invertible sheaves on Y , we have:

det(f∗OX)2 ∼= L(−∆X/Y )

Proof. We have that f∗f
!(OY ) ∼= Hom(f∗OX , OY ), and det(Hom(f∗OX , OY )) =

det(f∗OX)−1 by Proposition 4.54. Now taking the determinant of the short exact

sequence

0→ f∗OX → Hom(f∗OX , OY )→ f∗T (−DX/Y )→ 0

we obtain

det(f∗OX)2 ∼= L(−f∗DX/Y ) ∼= L(−∆X/Y ).





Chapter 5

Curves

5.1 Curves and function fields

In this section we will be looking at a classical class of Dedekind schemes, curves

over a field k.

Definition 5.1 (Curve over a field). A curve X over a field k is a Dedekind

scheme X with a morphism X
sX−→ Spec(k) such that OX(X) = k, with OX(Ui)

a finitely generated k algebra for an open affine cover {Ui}i∈I of X. A morphism

of curves f : X → Y is a morphism of them as Dedekind schemes such that

sY ◦ f = sX .

Remark 5.2. One may show that OX(Ui) being a finitely generated k algebra

on an open affine cover Ui is equivalent to OX(U) being a finitely generated k

algebra for all open affine U , see exercises 2.3.1− 2.3.4 in [Har77].

This field k will be present throughout our discussion, so we will drop reference

to the maps sX .

Remark 5.3. Usually, what we define a curve over k to be is called a connected

nonsingular complete curve over k, as in [Lor96]. All our Dedekind schemes are

connected and nonsingular, and since we will only consider complete curves, we

have chosen to suppress these adjectives.

Example 5.4. The Dedekind scheme P1
k is a curve over k. We saw in chapter 2

that its global sections were precisely the field k, and K(P1
k)
∼= k(t). Formally,

the structure map is given by the constant morphism to Spec(k), with the map

k = OP1
k
(P1

k).

77
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Throughout this these, we have seen a close relationship between Dedekind

schemes and their fields of fractions. In the case of curves, the relationship is as

close as possible, we may reconstruct a curve from its field of fractions. We say

that a subfield k ⊂ L is algebraically closed in L if any element of L algebraic

over k is contained in k.

Definition 5.5 (Function field over k). A function field L over k is a finitely

generated field extension L/k of transcendence degree 1, with k algebraically

closed in L. A morphism of function fields is a finite field extension L
ι−→ L′ that

the following diagram commutes.

L L′

k

ι

We wish to show that function fields over k correspond to curves over k. First,

we need the following technical lemma, which we prove following the argument

of theorem X.1.7 of [Lor96].

Lemma 5.6. If L/k(x) is a finite extension of fields, then the integral closure of

k[x] in L is a finitely generated k[x] module.

Proof. Let’s first prove this in the case of a purely inseparable extension. For

p = char(k), a finite purely inseparable extension L of k(x) is of the form

L = k(x)(q
1/pn1

1 , q
1/pn2

2 , ., q1/pnm

m )

where qi ∈ k(x). This is contained within the finite extension L′ = k′(x)(x1/pN )

where N = max1≤i≤m{ni}, and k′ is the finite extension of k obtained by adjoining

the pNth roots of all the coefficients of q1, ., qm. The integral closure of k[x] in L

is contained in the integral closure of k[x] in L′, and this is just k′[x1/pN ], which

is finitely generated as a k[x] module, so the integral closure is finitely generated.

Now for an arbitrary extension L, we may without loss of generality take L

to be normal over k(x). This is because if we show the integral closure is finitely

generated in a finite extension of L, then since k[x] is Noetherian, we will have

shown our desired integral closure is finitely generated. In this situation, taking

M to be the largest inseparable subextension of L containing k(x), we have that

L/M is separable, and M/k(x) purely inseparable, see proposition 6.1 in chapter

V of [Lan02]. By the previous result, the integral closure B of k[x] in M is finitely

generated over k[x], and by Theorem 3.16, the integral closure C of B in L is

finitely generated over B, so C is finitely generated over k[x], as desired.
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Proposition 5.7. For X a curve over k, the fraction field K(X) is a function

field over k.

Proof. Pick some affine U in X. Since OX(U) is a domain that is a finitely

generated k algebra, its Krull dimension equals the transcendence degree of its

fraction field over k, see theorem 11.25 of [AM69]. To see that k is algebraically

closed in K(X), note that any x algebraic over k must have vP (x) = 0 for all

points P . To see this, apply vP to an equation witnessing its algebraicity, and

use the elementary properties of valuations given in definition 2.49. Thus, any x

algebraic over k will be contained in⋂
P∈X

OX,P = OX(X) = k.

Conversely, for any function field over k, we may construct a locally ringed

space, which will end up being a curve over k, in a manner which by now should

look familiar.

Construction 5.8. For a function field L over k, we construct a locally ringed

space (Vk(L), OVk(L)) as follows:

• The points of Vk(L) are equivalence classes of valuations on L that vanish

on k.

• The topology on Vk(L) is generated by setting each nonzero equivalence

class of valuations to be closed.

• The structure sheaf is given by

OVk(L)(U) :=
⋂
v∈U

Ov = {x ∈ L|v(x) ≥ 0 for all v ∈ U} .

Let’s now check that for k(x)/k, the associated locally ringed space is P1
k. For

this, we just need to check that every valuation on k(x) which vanishes on k is

associated to a prime ideal in k[x] or v∞.

Proposition 5.9. Every nonzero valuation on k(x) that vanishes on k is equiv-

alent to vp or v∞, for p an irreducible polynomial of positive degree in k[x].
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Proof. For a nonzero valuation v, assume first that it is negative on some poly-

nomial p(x), which we may take to have minimal degree with this property.

Expressing p(x) as

p(x) = xq(x) + a for a ∈ k

we see that the degree of p(x) is 1 by minimality, and v is equivalent to v∞. So

now take v to be positive on some polynomial p(x). From the previous analysis,

we see v is nonnegative on all polynomials. We see that v is therefore positive on

some irreducible factor q(x) of p(x). Now if v was not equivalent to vq, then it

would be positive on some other irreducible polynomial r(x) of positive degree.

But since r(x) and q(x) generate the unit ideal, applying v to the expression

r(x)a(x) + q(x)b(x) = 1

yields a contradiction. So v ∼ vq, and we have proved the claim in all cases.

We are now ready to prove our desired equivalence.

Theorem 5.10. The functor taking a curve X over k to K(X) yields an equiv-

alence of categories between curves over k with finite maps, and function fields

over k. The pseudoinverse of this functor is given by taking the locally ringed

space Vk(L) associated to a function field L over k.

Proof. Let’s first check that Vk(L) is a curve over k. Pick an element t ∈ L\k, with

corresponding finite extension L/k(t). Frst note that any nonzero valuation v on

L restricts to a nonzero valuation on k(t), since L/k(t) is an algebraic extension.

To see this, if v(x) > 0, then apply v to an equation witnessing the algebraicity of

x over k(t), and use the elementary properties of definition 2.49. So since every

valuation on k(t) is positive on an open affine U of P1
k from Proposition 5.9, we

see that Vk(L) = vX(L), our Construction 2.60. So we have a Dedekind scheme

Vk(L), and a map Vk(L) → P1
k, with each OVk(L)(f

−1(U)) the integral closure of

P1
k(U) in L. Take

U = Spec(k[t]) = P1
k \ v0

and

U ′ = Spec(k[t−1]) = P1
k \ v∞.

to be our open cover of P1
k. Corollary 3.6 then gives that the following as an open

affine cover of Vk(L).

V := f−1(U), V ′ := f−1(U ′)
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On these open sets, OVk(L)(V ) is finitely generated as a k[t] module, and similarly

with V ′. So the morphism Vk(L) → P1
k is finite, and since OVk(L)(Vk(L)) is the

integral closure of OP1
k
(P1

k) = k in L, we have that Vk(L) is a curve.

So we see that the functor is fully faithful, and essentially surjective, with

pseudoinverse L→ Vk(L).

5.2 Degree of a point on a curve

The presence of a base field k allows for an absolute measure on the size of our

points, given by the degree of the residue extension κ(P )/k.

Definition 5.11 (Degree of a point). The degree degX(P ) of a closed point P

in X is the degree of the field extension κ(P )/k.

For this to make sense, we need to check that this degree is finite. Given

P ∈ X, let π be a uniformiser at P , and B be the integral closure of k[π] in

K(X). Since k(π) → K(X) is a finite extension, the associated map of curves

X → P1
k is finite. Therefore fP/(π) is finite, and this is exactly degX(P ).

We define the degree of a divisor similarly.

Definition 5.12 (Degree of a divisor). The degree of a divisor D =
∑

P∈X aPP

in Div(X) is given by

degX(D) :=
∑
P∈X

aP degX(P ) =
∑
P∈X

aP [κ(P ) : k].

Proposition 5.13. The degree respects our operations on divisors. Let f : X →
Y be a finite map of curves over k, with D ∈ Div(X), and D′ ∈ Div(Y ). Then

we have

degY (f∗D) = degX(D)

and

degX(f ∗D′) = [K(X) : K(Y )] degY (D′).

Proof. By linearity, it suffices to prove this for divisors of the form Q. The first

claim follows since the extension κ(Q)/k is the composition of the two exten-

sions κ(Q)/κ(f(Q)) and κ(f(Q))/k. For the second, note that degX(f ∗D′) =

degY (f∗f
∗D′) from the first proposition, and recall from Proposition 3.48 that we

have

f∗f
∗D′ = [K(X) : K(Y )]D′.
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Proposition 5.14 (Degree of a principal divisor is zero). Let X be a curve over

k. For any f ∈ K(X)∗, we have degX(div(f)) = 0.

Proof. First, let’s prove this for P1
k. Since k[x] is a unique factorisation domain,

and

degX(div(fg)) = degX(div(f)) + degX(div(g))

it suffices to show the claim for an irreducible polynomial p(x) ∈ k[x]. We see

that if p is the ideal generated by p(x), then vp(p(x)) = 1, and v∞(p(x)) = −n,

where n is the degree of p(X) as a polynomial. But the degree of v∞ is 1, and

the degree of the point P is n, so this sum is 0. For the case of a general curve

X, pick a transcendental element x ∈ K(X), with associated finite map X → P1
k.

By propositions 5.14 and 5.13 we therefore have

degX(div(f)) = degP1
k
(f∗ div(f)) = degP1

k
(div(NX/P1

k
(f))) = 0.

From this, we see that the class group has a canonical map to Z.

Corollary 5.15 (Degree as a map on class groups). The degree map on divisors

extends to a map Cl(X)→ Z.

5.3 Adele ring of a curve

We saw in chapter 3 that completing the local rings OX,P led to better linear alegr-

baic properties. For a given curve X, we will construct a ring which completes at

all points of X at once, allowing us to use the desirable properties of the comple-

tion in a global setting. First, we define the ring K̂(X)
P

to be K(X)⊗OX,P
Ôp
X,P .

This is also seen to be the quotient ring of Ôp
X,P , since we only need to invert a

uniformiser to obtain a field, which can be taken to lie in K(X) by Lemma 3.25.

Definition 5.16 (Adele ring of a curve). For a curve X/k, the ring of adeles AX

of X is defined to be the subring of the product ring
∏

P∈X K̂(X)
P

, where all but

finitely many components are contained in Ôp
X,P .

We will write an adele as a sequence (αP )P∈X indexed by points of X, with

αP ∈ K̂(X)
P

, such that αP ∈ Ôp
X,P for all but finitely many points P ∈ X.
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We have a natural diagonal map K(X)
∆−→ AX given by taking the product

of the maps

K(X)→ K(X)⊗OX,P
Ôp
X,P = K̂(X)

P

.

This can give us some intuition for how to think about the adeles. At each point

P of X, a function f on X gives a sequence of infinitesmal data, see the discussion

following definition 3.19. By completing at a point P , we consider all sequences of

infinitesmal data at P , and the adele ring is the global version of this, considering

the collections of all infinitesmal local data at once, regardless of whether they

arise from a global function.

Our valuations on K(X) naturally extend to valuations on AX , we define vQ

by

vQ((αP )P∈X) = vQ(αQ).

Remark 5.17. This is the definition of the adele ring of a curve, and a similar

construction occurs in number theory for Spec(OK). This is slightly different

however, one also needs to take into account all the completions of K, such as

the real numbers R for Spec(Z).

For any open subset U of X, we have a distinguished subring of AX , extending

OX(U) along the diagonal embedding.

Definition 5.18. For an open subset U of X, we define

ÕX(U) = {(aP )P∈X ∈ AX |vP (aP ) ≥ 0 for all P ∈ U}.

That is, ÕX(U) is those adeles which look like OX(U) from the perspective of vP

for P ∈ U .

Taken together, these yield a sheaf of rings on X, which we denote by ÕX .

This sheaf of rings can be thought of a completed version of the structure sheaf

of X. Its stalks at closed points are now the completed local rings Ôp
X,P , and its

stalk at the generic point is AX , with ÕX(U) ∩K(X) = OX(U). So we obtain a

new locally ringed space, (X, ÕX).

Proposition 5.19 (Functoriality of the adele ring). For a finite map of curves

f : X → Y over k, the natural inclusions K(X) → AX and AY → AX yield a

canonical isomorphism

AX
∼= AY ⊗K(Y ) K(X).
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Proof. First, observe that by corollary 3.27, for a point P ∈ Y , we have the

following isomorphisms.

K(X)⊗K(Y ) K̂(Y )
P ∼=

K(X)⊗K(Y ) K(Y )⊗OY,P
Ôp
Y,P
∼=

K(X)⊗OY,P
Ôp
Y,P
∼=

K(X)⊗(f∗OX)P (f∗OX)P ⊗OY,P
Ôp
Y,P
∼=

K(X)⊗(f∗OX)P

∏
Q:Q→P

Ôq
X,Q
∼=

∏
Q:Q→P

K̂(X)
Q

We see therefore that by picking a basis {bi}ni=1 of K(X) over K(Y ), we obtain

a unique expression of any element

(αQ)Q∈X in
∏
Q∈X

K̂(X)
Q

as

(αQ) =
n∑
i=1

bi(βP )i

where (βP )i are in
∏

P∈Y K̂(Y )
P

. Since the bi have vQ(bi) = 0 for all but finitely

many Q ∈ X, we see that (αQ)Q∈X will be in AX if and only if each (βP )i is in

AY .

Definition 5.20. By tensoring the K(Y ) linear trace TrK(X)/K(Y ) : K(X) →
K(Y ) with AY , we obtain the trace on adeles

TrX/Y : AX → AY .

Note that this is also given by sum of the local traces, with respect to semilocal

decompositions of Proposition 5.19.

We saw in definition 4.36 that for any divisor D on X, we obtained an invert-

ible subsheaf L(D) of K(X). We may also upgrade this to our rings of adeles.

Definition 5.21. For D a divisor on X, we have a sheaf of ÕX modules L̃(D)

on X given by

L̃(D)(U) = {(aP )P∈X ∈ AX |vP (aP ) + vP (D) ≥ 0 for all P ∈ U}.

This is the same description of L(D)(U), but intepreted in the adele ring instead

of K(X).
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Like our other adelic constructions, we have L̃(D)(U) ∩ K(X) = L(D)(U).

We wont be utilising these locally free sheaves to the extent of chapter 4, we

will be mainly be dealing with their global sections. We will denote the global

sections of L̃(D) by LD.

5.4 Riemann-Roch, numerical form

In this section, we will prove the Riemann-Roch theorem, a fundamental result

describing the behaviour of an invertible sheaf L(D) on X. We will see how the

adelic language enables a simple proof of this theorem.

For any divisor D on X, consider the following exact sequence, where ∆D is

the diagonal, followed by the projection onto the quotient.

0→ ker(∆D)→ K(X)
∆D−−→ AX/LD → coker(∆D)→ 0

Definition 5.22. For any divisor D on X, we define two associated k vector

spaces;

H0(D) := ker(∆D)

and

H1(D) := coker(∆D).

Observe that since LD∩K(X) = L(D)(X), the space H0(D) is the k vector space

of global sections of L(D).

With this, we are ready to state the first form of the theorem. Throughout,

dimkV will denote the k dimension of a finite k vector space V .

Theorem 5.23 (Riemann-Roch, numerical form). Let X be a curve over k. For

any divisor D on X, we have that H0(D) and H1(D) are finite dimensional over

k, and the integer

dimkH
0(D)− dimkH

1(D)− degX(D)

is independent of D, depending only on X.

To prove this, we will first observe some simple facts.

Lemma 5.24. If degX(D) < 0, then H0(D) is the zero vector space.

Proof. For H0(D) to be nonzero, we require div(f) + D ≥ O for some nonzero

f ∈ K(X)∗. By applying degX , and using Proposition 5.14, we see degX(D) must

be nonnegative.
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Lemma 5.25. For any divisor D ∈ Div(X), the kernel of the natural map

AX/LD → AX/LD+P

is isomorphic to κ(P ), and hence has k dimension degX(P ).

Proof. The only coordinate of which this kernel is nonzero is P , and there we see

the kernel is pvP (D)/pvP (D)+1 ∼= κ(P ).

Lemma 5.26. Let f : X → Y a finite map of curves of degree n, with g ∈ K(X)∗.

There exists a divisor D on Y such that the multiplication by g map on adeles

descends to a map of quotients µg, where O denotes the zero divisor on X.

AY AX

AY /LD AX/LO

(αP )→(g·αP )

µg

Proof. We give this divisor D as

vP (D) = min
Q:Q→P

{vQ(g), 0}.

Let Q/P be points of X and Y , with Q over P . If 0 ≤ vP (αP ) + vP (D), then

0 ≤ vP (αP ), so we have:

0 ≤ eQ/PvP (αP ) + vP (D) ≤ eQ/PvP (αP ) + vQ(g) ≤ vQ(g · αP )

From which the claim follows.

We will need one final lemma, which is the core fact at the heart of the proof.

Lemma 5.27. For the zero divisor O on P1
k, we have H1(O) = 0. That is, every

adele (αP ) can be expressed as

(αP ) = f + (βP ) (5.1)

where f ∈ K(X), and vP (βP ) ≥ 0 for all P ∈ X.

Proof. For any adele (aP ), for all but finitely many components, αP is contained

in Ôp

P1
k,P

, so it suffices to show that every adele supported at a single point P can

be expressed in this form of (5.1). By applying the t→ t−1 automorphism of P1
k,

we may assume that the point P is not the point at infinity, and corresponds to
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a prime ideal of k[t]. Since k[t] is a principal ideal domain, any prime ideal p is

generated by a unique monic irreducible polynomial π.

So if GP is the adele supported only at P by the element G ∈ k̂(P1)
P

, then

for some m ∈ N we have vP (πmGP ) ≥ 0. The coset of πmGP in k[t]/πm has a

unique polynomial representative q of degree less than m · deg(π). We claim that

GP = q/πm + (GP − q/πm)

gives a decomposition of the form (5.1). First, we see that for Q 6= P a point

corresponding to a prime ideal of k[t], we have

vQ(GP − q/πm) ≥ vQ(q/πm) ≥ 0.

At infinity, since deg(q) < m · deg(π), we also have

v∞(q/πm) ≥ 0.

Finally, at P , by construction, we have vP (G− q/πm) ≥ 0.

We can now prove the theorem.

Proof of Theorem 5.23. Consider the following diagram:

0 κ(P ) ker(jD,P ) 0

H0(D) K(X) K(X)/LD H1(D) 0

H0(D + P ) K(X) K(X)/LD+P H1(D + P ) 0

coker(iD,P )

iD,P jD,P

δ

From this, we obtain three short exact sequences.

0→ H0(D)→ H0(D + P )→ coker(iD,P )→ 0 (5.2)

0→ ker(jD,P )→ H1(D)→ H1(D + P )→ 0 (5.3)

0→ coker(iD,P )
δ−→ κ(P )→ ker(jD,P )→ 0 (5.4)
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Only the last of these requires an explanation. To define the map δ, lift an

element of the cokernel and include it into K(X), then project it into K(X)/LD.

By commutativity, this will land in the image of κ(P ), and one may verify by a

simple diagram chase that this map is well defined and the sequence is exact.

So from this, we see that since κ(P ) is finite dimensional, coker(iD,P ) and

ker(jD,P ) are also finite dimensional. Observe that any divisor D can be obtained

from any other divisor D′ by a finite sequence of adding and removing points of

X. The finite dimensionality of these differences therefore implies that if for some

divisor D ∈ Div(X), dimkH
i(D) is finite, then dimkH

i(D′) is also finite for all

D′ ∈ Div(X).

Since dimkH
0(O) = 1 for all curves directly from our definition 5.1, we see

that H0(D) is finite dimensional for all divisors D on a curve X.

In the specific case of P1
k, since dimkH

1(O) = 0 by Lemma 5.27, we get that

H1(D) is finite dimensional for all divisors D on P1. Now for an arbitrary curve,

pick a finite morphism to P1
k, and {gi}ni=1 a basis of K(X)/K(P1).

Then from lemma5.26 there existDi ∈ Div(P1
k) such that we have the following

diagram⊕n
i=1K(P1)

⊕n
i=1 AP1/LDi

⊕n
i=1 H

1(Di) 0

K(X) AX/LO H1(O) 0

∑
µgi

∑
µgi

Where the maps
∑
µgi are surjective by Proposition 5.19. Thus, the induced

map
n⊕
i=1

H1(Di)→ H1(O)

is surjective. So H1(O) is finite dimensional for an arbitrary curve X.

So now on an arbitrary curve X, the finite dimensionality of ker(jD,P ) gives

that dimkH
1(D) is finite for all divisors D ∈ Div(X).

So all the vector spaces in sequences 5.2,5.3 and 5.4 are finite dimensional, so

since dimension is additive in short exact seqences, we have

dimkH
0(D)− dimkH

1(D) = dimkH
0(D + P )− dimkH

1(D + P )− dimk(κ(P ))

So since degX(P ) = dimk(κ(P )), we see that this quantity

dimkH
0(D)− dimkH

1(D)− degX(D)

is independent of the divisor D, completing the proof.
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Definition 5.28. For a curve X over k, we call the integer dimkH
1(O) the genus

of X, denoted gX .

Corollary 5.29. We may phrase Theorem 5.23 as the equality

dimkH
0(D)− dimkH

1(D) = degX(D)− gX + 1

Proof. This holds for D = O, and from Theorem 5.23, this number 1 − gX is

independent of the divisor D.

This terminology is not a coincidence, in the case of curves over C, the closed

points of X can be given the structure of a real two dimensional manifold, and

the genus of X as a curve agrees with the topological genus of this surface, though

this is a deep result, see [Mir95].

5.5 Weil differentials

The full Riemann-Roch theorem is more than just the numerical statement of

Theorem 5.23, we can actually interpret the space H1(D) as the sections of an-

other invertible sheaf, with Riemann-Roch becoming a statement of duality. We

will use Weil differentials to prove this, since they allow for a simple rapid proof.

While technically easier, this approach obscures the geometric aspect of this

theorem. The reader familiar with differential forms is invited to read Theorem

5.47 to see the relation of Weil differentials with the usual sheaf of differentials.

Definition 5.30 (Weil differentials). A Weil differential on X is a k linear func-

tional on AX/K(X) that vanishes on LD for some divisor D.

We denote the set of Weil differentials that vanish on LD by ΩD. Note that

the k dimension of ΩD is dimkH
1(D), since this is the k dual of H1(D). For

divisors D ≤ D′, since LD ⊂ LD′ we have ΩD′ ⊂ ΩD.

Proposition 5.31. The set of Weil differentials can be given the structure of a

K(X) vector space, denoted J(X). With this structure, we have

f · ΩD ⊂ ΩD−div(f).

Proof. If ω is a Weil differential, then the functional f · ω((ai)) = ω(f · (ai)) is a

Weil differential, since if ω vanishes on LD, then fω vanishes on LD−div(f).

It remains to show that Weil differentials are closed under addition. If ω1 and

ω2 vanish on LD1 and LD2 respectively, then w1 +w2 vanishes on D3 where D3 is

defined by vP (D3) = min{vP (D1), vP (D2)}.
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Definition 5.32. For any ω ∈ J(X), we define its divisor div(ω) to be the

maximal D such that ω ∈ ΩD.

Note that this is well defined, since if ω ∈ ΩD1 ∩ ΩD2 , then ω ∈ ΩD3 where

vP (D3) = max{vP (D1), vP (D2)}.
From Proposition 5.31, we have that div(f · ω) = div(f) + div(ω).

Theorem 5.33. The space of Weil differentials J(X) is a one dimensional vector

space over K(X).

Proof. Let ω1 and ω2 be Weil differentials. Pick a sufficiently negative divisor D

such that ω1, ω2 ∈ ΩD. Then for any divisor D′, we have a map

H0(D′)
⊕

H0(D′)→ ΩD−D′ (5.5)

given by mapping (f, g) to fω1 + gω2. This is k linear, and well defined by

Proposition 5.31.

Now note from corollary 5.29 and Lemma 5.24, that if D′ has degX(D−D′) <
0, then

dimk ΩD−D′ = dimkH
1(D −D′) = degX(D′)− degX(D) + gX − 1.

From corollary 5.29, we also have the following inequality, classically known as

Riemann’s inequality.

dimkH
0(D′) ≥ degX(D′)− gX + 1

So now we see for sufficiently large divisors D′, those with

degX(D′) > 3gX − 3− degX(D)

we have 2 dimkH
0(D′) > ΩD−D′ . So in this situation, our map 5.5 is not injec-

tive. Thus there exist f, g ∈ K(X)∗ with fω1 = gω2, so the space J(X) is one

dimensional.

In view of Theorem 5.33, we see that the divisor class of div(ω) in Cl(X) is

independent of the divisor chosen. We call this divisor class the canonical class

KX . By abuse of notation, we will also use KX to denote a (noncanonically

chosen) divisor in this class.
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5.6 Riemann-Roch, duality form

We now have all the groundwork laid for the full Riemann-Roch theorem.

Theorem 5.34 (Riemann-Roch). The canonical evaluation pairing

J(X)⊗K(X) AX → k

induces a nondegenerate pairing ΩD ⊗k H1(D) → k. Picking a Weil differential

ω with divisor KX , we obtain an isomorphism ΩD
∼= H0(KX − D), and so we

have

H0(KX −D) ∼= H1(D)∗.

Thus obtaining the duality form of the Riemann-Roch theorem.

dimkH
0(D)− dimkH

0(KX −D) = degX(D)− gX + 1.

Proof. The nondegeneracy of the pairing ΩD ⊗k H1(D) → k follows from our

definition of ΩD. If ω is a chosen Weil differential, then H0(KX −D) · ω ⊂ ΩD.

From Theorem 5.33, and Proposition 5.31 this inclusion is an equality, giving the

result.

We will now investigate some of the corollaries of Theorem 5.34.

The first is that once we go above a certain degree, the dimension of the global

sections of L(D) grows uniformly with the degree.

Proposition 5.35. If D is a divisor on X, with degX(D) > 2gX − 2, then

dimkH
0(D) = degX(D)− gX + 1.

Proof. For D of this degree, we have degX(KX−D) < 0, so the space H0(KX−D)

is zero dimensional by 5.24.

The upshot of this proposition is that the genus of a curve X over k can be

calculated from the numerical quantities of H0(D) and degX(D) as D gets large.

This, with some Galois theory allows one to show that the genus of the curve

associated to the function field K(X ′) := K(X)⊗k k′ equals the genus of X. For

a proof of this, see corollary IX.5.8 of [Lor96].

The next proposition shows that a canonical divisor KX is quite easy to find,

as it is determined by simple numerical data.
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Proposition 5.36. For X a curve over k, the degree of KX is 2gX − 2, and

H0(KX) is gX dimensional. Any divisor D with these properties is also a canon-

ical divisor, for some f ∈ K(X)∗, we have KX = D + div(f).

Proof. We have from Theorem 5.34

dimkH
0(KX) = dimkH

1(O) := gX

and

dimkH
0(O) = dimkH

1(KX) = 1.

By Theorem 5.23, we have

dimkH
0(KX)− dimkH

1(KX)− degX(KX) = 1− gX

so the degree of K is 2gX − 2. Conversely, let D be a divisor of degree 2gX − 2

with dimkH
0(D) = gX . We have

dimkH
0(D)− dimkH

0(KX −D)− (2gX − 2) = 1− gX .

So we see that H0(KX − D) is one dimensional, and KX − D is degree 0. For

f ∈ H0(KX − D), we have div(f) + KX − D ≥ O, but this divisor is degree 0,

hence is the zero divisor O, giving the result.

Our last corollary requires some more theory first, we will need to interpret

Weil differentials locally.

Definition 5.37. The component of a Weil differential ω at P is the k linear

functional ωP given by the composite

K̂(X)
P

→ AX → AX/K(X)
ω−→ k.

Using these local components, we may describe the P component of the divisor

div(ω) as follows.

Proposition 5.38. Let P be a point of X, with p its associated maximal ideal

of Ôp
X,P . The functional ωP vanishes on p−vP (div(ω)), and does not vanish on

p−vP (div(ω))−1.

Proof. We know that ωP vanishes on any x ∈ p−vP (div(ω)), since it vanishes on

the adele x̄ supported only at P . For the nonvanishing, we know that ω doesnt
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vanish on Ldiv(ω)+P , so there exists an adele (αQ) with ω((αQ)) 6= 0. We may

express this as

(αQ)Q∈X = ᾱP + (αQ)Q6=P∈X .

Here ᾱP is the adele with component αP only at P . Since (αQ)Q6=P∈X ∈ Ldiv(ω),

by linearity, we have ωP (αP ) 6= 0, and we know that αP ∈ p−vP (div(ω))−1 by

construction.

From this, we see that an arbitrary k linear functional φ on AX will be a Weil

differential if and only if it satisfies the following properties:

i) For all but finitely many points P ∈ X, each component φP vanishes on

Ôp
X,P ⊂ K̂(X)

P

, and does not vanish on some x ∈ Ôp
X,P with vP (x) = −1.

ii) For all the other points Q ∈ X, φQ vanishes on q̂n ⊂ Ôq
X,P for some n ∈ Z.

iii) The functional φ vanishes on K(X) ⊂ AX .

iv) The component φP is not identically 0 for any P ∈ X.

We will now define the trace on Weil differentials.

Definition 5.39. Let f : X → Y be a finite, separable morphism of curves over

k. We define the trace map on Weil differentials by

Trω := ω ◦ TrX/Y .

Proposition 5.40. The functional Trω is a Weil differential on X, and we have

div(Trω) = f ∗ div(ω) +DX/Y

where DX/Y is the discriminant divisor.

Proof. We will verify first that Trω is a Weil differential, using our characterisa-

tion. First, Trω vanishes on K(X) since TrX/Y (K(X)) = K(Y ), giving iii). Since

the trace is the sum of local traces, we see that TrωQ vanishes on Ôq
X,Q wheneverQ

is unramified, and there exists some x with vQ(x) = −1, and vP (TrQ/P (x)) = −1,

giving i). By the finiteness of the different divisor, even when Q is ramified, Trω

will vanish on some finite power of q, giving ii). Finally, the local components of

Trω will be not identically zero since each local trace form is nondegenerate by

seperability of our extension K(X)/K(Y ).

For the second claim, locally at Q/P we need to compute the lowest power of

q that Trω vanishes identically on. First, assume that vP (div(ω)) = 0. Then the

Q component of div(Trω) is given by the maximal n ∈ Z such that

TrQ/P (π−nÔq
X,Q) ∈ Ôp

Y,P
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for π a uniformiser at Q. This is precisely our definiton of vQ(DX/Y ). Now for

an arbitrary ω, note that πm · Trω = Tr(πmω) by linearity, and div(πmω) =

div(πm) + div(ω). Since for a uniformiser γ at P , we have vQ(γ) = eQ/P , we see

locally that

vQ(Trω) = eQ/PvP (ω) + vQ(DX/Y ).

In view of the definition of f ∗, the result follows.

Corollary 5.41 (Riemann-Hurwitz formula). For a finite separable morphism

f : X → Y of curves, of degree n, we have:

2gX − 2 = n(2gY − 2) + degX(DX/Y ).

Proof. We take the degree of the Weil differential Trω in two different ways.

On one hand, it is 2gX − 2 since it is a Weil differential on X. On the other,

propositions 3.48 and 5.40 give the left side.

Corollary 5.42. If f : X → Y is a finite separable map of curves, then gX ≥ gY .

Proof. Since DX/Y is effective, degX(DX/Y ) is positive, as is n, giving the result.

5.7 Residues and differential forms

For a curve X, we have noted that while the divisor class of KX is canonical, the

actual divisor KX depends on our choice of Weil differential. In light of Theorem

5.34, we should look for a canonical invertible sheaf F such that [div(F)] = [K],

with ΩD canonically isomorphic to the global sections of F ⊗ L(−D).

In this section, we will describe this invertible sheaf, and sketch how the

classical proof of the Riemann-Roch theorem can be accomplished using it. For

the proofs of the statements in this section, see the excellent exposition of [Ser88].

Definition 5.43 (Differentials). The module of differentials ΩR,k over k of a k

algebra R is the quotient of the free R module on the symbols df , for f ∈ R

subject to the relations

d(f + g) = df + dg

d(fg) = f dg + g df

dα = 0
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for α ∈ k.

It can also be characterised by its universal property, for any R-module M ,

ΩR/k represents the functor of k-derivations valued in M .

homR(ΩR,k,M) ∼= Derk(R,M)

Definition 5.44 (Differentials on curves). For a perfect field k, and a curve X/k,

the modules ΩU,k of k derivations on each affine open set U glue to an invertible

sheaf ΩX on X.

From here, we will assume that k is perfect. One should think of the sections

of ΩX over U as differential 1-forms on X, via the interpretation of smooth

cotangent vector fields on a smooth manifold M being derivations on the ring

C∞(M).

We call elements of ΩX(U) regular differentials on U , and elements of ΩXxgen

rational differentials, denoted Ωr
X . Since ΩX is invertible, this space Ωr

X is one

dimensional over K(X), and this corresponds to our J(X).

Because ΩX is invertible, its stalk at each P is a free OX,P module of rank

one, and it can be shown that if π is uniformiser of OX,P , then dπ is a basis of

this stalk. By expanding in terms of this uniformiser, one may easily show that

the completed local ring is isomorphic to the power series ring κ(P )[[π]].

Definition 5.45. Any rational differential ω ∈ Ωr
X can be expanded as

ω = f(π) · dπ

in (ΩX)pP where f is a formal power series in π, with coefficients in κ(P ). If c−1

is the coefficient of π−1 in f , then we define the residue of w at P to be

ResP (ω) := Trκ(P )/k(c−1).

Similarly, we define the order of ω at P to be vP (f).

One may show without much difficulty that the order of ω at P is independent

of the uniformising parameter π. With significant work, see [Ser88], one may

also show that the residue is also independent of this choice. In the complex

geometry situation, this is precisely the usual residue of a meromorphic differential

at a point P , the invariance of which can be proved via contour integration, see

[Mir95].

Similar to the complex case, one has the following theorem, though as ex-

pected, it is more difficult to prove in this algebraic setting.
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Theorem 5.46 (The residue theorem). For any ω ∈ Ωr
X , we have∑

P∈X

ResP (ω) = 0.

In this case of perfect base field k, this allows us to canonically identify J(X)

and Ωr
X .

Theorem 5.47. For X a curve over a perfect field k, we have a canonical iso-

morphism of K(X) vector spaces

Ωr
X

τ−→ J(X)

between rational differentials and Weil differentials on X.

For any rational differential ω, τ is given by

τ(ω)((αP )) =
∑
P∈X

ResP (αP · ω).

From this, we may express the duality of Theorem 5.34 coordinate independently

as the perfect pairing

H0(ΩX ⊗ L(−D))⊗k H1(D)→ k.

Remark 5.48. This comparison does not strictly require a perfect field k, the

sheaf of differentials will behave similarly for any curve with a separable morphism

to P1
k. Over non-perfect fields however, not all curves are of this form. In this

somewhat pathological setting, the author does not know of a similar canonical

invertible sheaf giving rise to the divisor class KX .
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