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Abstract

The results in this thesis are linked by their use of the six functor formalism. In
the first chapter, we introduce geometric extensions, canonical sheaves on singu-
lar varieties characterised by their occurrence as a summand of the cohomology
of any resolution of singularities. These objects generalise intersection cohomol-
ogy, parity sheaves, and provide a definition of intersection K-theory. In the
second chapter, we interpret this construction in the context of real algebraic
varieties. This leads to a real interpretation of the mod two Hecke category,
and supplies a definition of mod two intersection homology groups on real alge-
braic varieties, answering an old question of Goresky-MacPherson. In our third
chapter, we give a string diagrammatic interpretation of various maps in the six
functor formalism. This graphical calculus leads to the proof of a general coher-
ence theorem. While this theorem does not incorporate the monoidal aspects
of the theory, it gives the first coherence result in a six functorial context that
treats all four functors f∗, f!, f∗, f !, along with the natural transformations
between them.
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Introduction

This thesis consists of three independent chapters, linked by their common use of
the six functor formalism. The six functor formalism is a powerful 2-categorical
framework used to study the topology and geometry of spaces. For us, a six
functor formalism consists of the following data:

• A category SX for each space X.

• For each morphism f : X → Y , four functors, with adjunctions:

f∗ ⊣ f∗ f! ⊣ f !

SX SY

f∗

f!

f !

f∗

A fundamental insight of Grothendieck [45] is that one may work formally
with this categorical data, and that this may yield significant geometric insight.
The first two chapters of this thesis may be viewed as instantiations of this idea,
the architecture of the formalism leads directly to geometric results.

The first chapter of this thesis is the contents of the paper [51], and concerns
work joint with Geordie Williamson. The main result of this chapter is the
construction of the geometric extension on an algebraic variety.

Theorem 0.0.1. Let Y be an irreducible variety, and let S be a suitably finite
six functor formalism with fundamental classes. Then there exists a canonical
object ES(Y ) in SY characterised up to isomorphism by the following:

1. ES(Y ) is indecomposable.

2. ES(Y ) extends the constant sheaf 1U over the smooth locus U of Y .

3. ES(Y ) is a direct summand of f∗1X , for any resolution of singularities
f : X → Y .

We call this object the geometric extension on Y .
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Our proof of this theorem is formal, relying only on simple notions, inter-
preted within a six functor formalism. For sheaves over Q, these objects are
intersection cohomology while for sheaves over Fp they are the parity sheaves1

of Juteau-Mautner-Williamson [58]. Within the context of (p-completed) K-
theory, this geometric extension provides a definition of the intersection K-
theory for an algebraic variety over C.

The second chapter of this thesis interprets geometric extensions in the con-
text of real algebraic geometry. The formal nature of the proof of Theorem 0.0.1
provides a real geometric extension on the real points Y (R) of an irreducible
algebraic variety Y :

E (Y (R),F2)

The cohomology of this object provides a definition of real mod two intersection
cohomology groups, answering a question of Goresky-MacPherson [44, Q.7] from
1984.

Theorem 0.0.2. For Y an irreducible variety of dimension d with a real smooth
point, the real geometric extension E (Y (R),F2) is a d-shifted self dual complex
of sheaves on Y (R). Its cohomology therefore satisfies Poincare duality::

Hi(E (Y (R),F2)) ∼= Hd−i
c (E (Y (R),F2))∗

If Y admits a small resolution f : X → Y , then the cohomology of E (Y (R),F2)
agrees with the cohomology of this small resolution X(R).

Viewing these real constructions through a motivic lens, they also provide
a real description of the mod two Hecke category of a split reductive group G
over R, with flag variety F .

Theorem 0.0.3. The category generated by real geometric extensions on the
real Schubert varieties in F (R) is equivalent to the even part of the non-equivariant
mod two Hecke category H (G,F2). Interpreting this even Hecke category as
even shifts of mod two parity sheaves on F (C), this equivalence divides all de-
grees by two.

In the third chapter, we leave geometry behind, and treat the six functor
formalism as a formal 2-categorical object. We introduce a string diagrammatic
method for understanding coherences in this six functorial context. This in turn
enables simple topological arguments to resolve these coherences. For example,
the localisation compatibility of the convolution isomorphism

Hom(f! , g∗ ) Hom(g̃∗ , f̃ ! )

Hom(j∗f! , j
∗g∗ ) Hom(ĵ∗g̃∗ , ĵ∗f̃ ! )

Hom(fU !j
∗ , gU ∗j

′∗ ) Hom(g̃∗U j
∗ , f̃ !

U j
′∗ )

τ

≃ ≃

τ

1When such objects are defined, such as Schubert varieties. Our construction has no such
topological restrictions.
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becomes the following comparison of string diagrams:

vs

The results of this chapter let one simply manipulate strings to prove these
kinds of coherences. Using these diagrammatic methods, we prove a coherence
theorem in any six functorial context, a simplified version of which we give
below.

Theorem 0.0.4. Construct the pullback n-cube generated by n maps

fi : Xi → Y

any of which may be proper and/or open immersions. Consider natural trans-
formations between functors that take the following form:

• The domain and codomain functors are compositions of

g∗, g!, g∗, g!

for any map g in this pullback n-cube.

• The natural transformations are generated by:

– Units and counits of adjunction.

– The maps g! → g∗ and g! → g∗ between ! and ∗, when defined, along
with their inverses.

– Composition isomorphisms over commutative squares.

– Base change maps involving g∗ and g∗, g! and g!, as well as base
change maps which use the ! and ∗ functors together.

– Formal inverses and adjoints of these base change maps.

Any such natural transformation may be given a coloured, directed string dia-
gram. If two natural transformations α, β are of this form, and have the same
induced matching of domain and codomain2, then they are equal:

α = β

2This is equivalent to their underlying uncoloured, undirected string diagrams being isotopy
equivalent in the natural sense.

3



This theorem, and its more general variant Theorem 3.6.1, may be inter-
preted as identifying the only obstructions to commutativity as the obvious
ones.

These theorems are incomplete in a precise sense however, as they do not
incorporate all the aspects of the six functor formalism. The primary reason
for this is that compatibilities like monoidality of f∗ and lax monoidality of
f∗ require composition isomorphisms and base change maps over non-pullback
squares. While we do not require pullback squares to work diagrammatically,
they are required for our broad coherence statements. This is a nontrivial issue,
as dropping this assumption leads to natural diagrams which do not commute,
such as Example 3.3.10. These non-pullback squares present additional com-
plexity, and we regard the incorporation of these as the natural next step to
resolving all coherence problems within a six functor formalism.

4



Chapter 1

Geometric extensions

1.1 Introduction

This paper introduces geometric extensions, which are generalizations of in-
tersection cohomology sheaves and parity sheaves. We work in the setting of
constructible sheaves on algebraic varieties, and show that direct image sheaves
along any resolution contain a canonical direct summand which is independent
of the resolution.1 When our coefficients are Q, this summand is the intersection
cohomology sheaf. When our coefficients are finite, we obtain a new object. Our
proof is formal, and works more generally for proper maps with smooth source,
and with coefficients in any suitably finite ring spectrum. The stalks of the geo-
metric extension (with coefficients in finite fields and other ring spectra) provide
subtle topological invariants of the singularities of algebraic varieties.

In order to motivate geometric extensions, we first recall the traditional
route to intersection cohomology extensions through perverse sheaves. We then
turn to an alternative approach via the Decomposition Theorem, which will
motivate the consideration of geometric extensions. We then state our main
result, and finally give some motivation from modular representation theory,
where geometric extensions generalise the notion of a parity sheaf.

1.1.1 Motivation from the Decomposition Theorem

Let Y be a complex algebraic variety, equipped with its classical (metric) topol-
ogy. Inside the constructible derived category of sheaves of Q-vector spaces on
Y there is a remarkable abelian category of perverse sheaves, which is preserved
by Verdier duality. The abelian category of perverse sheaves is finite length and
its simple objects are the intersection cohomology extensions of simple local sys-
tems on irreducible, smooth, locally closed subvarieties. Their global sections
compute intersection cohomology.

1After having discovered this statement and its proof, we became aware of the McNamara’s
paper [77, §5] where a statement equivalent to one of our main theorems is proved. Our proof
is almost identical to McNamara’s.
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The central importance of intersection cohomology extensions becomes man-
ifest in the Decomposition Theorem. The Decomposition Theorem states that
for smooth X and any proper morphism

f : X → Y

of complex algebraic varieties the derived direct image f∗QX is semi-simple:
isomorphic in the derived category to a direct sum of shifts of intersection co-
homology extensions of simple local systems on strata. The Decomposition
Theorem implies that the intersection cohomology of Y is a direct summand
in the cohomology of any resolution. It is also implies (and generalizes) funda-
mental ideas in the topology of complex algebraic varieties like the local and
global invariant cycle theorems, semi-simplicity of monodromy and Hodge the-
ory [9, 23, 89, 97].

The Decomposition Theorem also provides another route to intersection co-
homology complexes. The constructible derived category is Krull-Schmidt: ev-
ery object admits a decomposition into indecomposable summands, and this
decomposition is unique. The Decomposition Theorem implies that if one con-
siders all proper maps to Y with smooth source

X1

X2

X3

Y

f1 f2
f3

then the summands of the derived direct images (fi)∗QXi are of a special form:
they are shifts of intersection cohomology complexes.

This observation allows one to imagine an alternate version of history, where
intersection cohomology complexes were discovered via the Krull-Schmidt theo-
rem rather than through the theory of perverse sheaves2. It also naturally raises
the following question:

Question 1.1.1. Let Λ denote a ring, and let ΛX denote the constant sheaf on
X with coefficients in Λ. What can one say about the summands of the derived
direct image f∗ΛX , for any resolution f : X → Y ? More generally, what can
one say about the summands of f∗ΛX for any proper morphism with smooth
source f : X → Y ?

This question should be considered the central motivation of this paper.
By the proper base change theorem, the stalks of f∗ΛX record the Λ-cohomology

of the fibres of f . If Question 1.1.1 has an answer giving a small list of pos-
sible summands (as is the case with Λ = Q, as implied by the Decomposition
Theorem) then there are basic building blocks of the cohomology of morphisms,

2The expert will miss the adjective “of geometric origin” in this discussion. Everything we
discuss in this paper will be “of geometric origin”.
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which only depend on Y and not on the particular morphism. For example, the
“support theorems” (see e.g. [12, 82, 78]) show that the fibres of certain “mini-
mal” maps (e.g. the Grothendieck-Springer resolution or Hitchin fibration) are
determined to a large extent by the base Y , and the generic behaviour of the
map.

1.1.2 Main results

Let Λ denote a field or complete local ring. As above, ΛX denotes the constant
sheaf on X with coefficients in Λ. We are able to give a partial answer to
Question 1.1.1. Any resolution contains a canonical direct summand:

Theorem 1.1.2. (see Theorem 1.5.1) Let Y be an irreducible variety. There
exists a complex E (Y,Λ) ∈ Db

c(Y,Λ) characterised up to isomorphism by the
following:

1. E (Y,Λ) is indecomposable and its support is dense;

2. E (Y,Λ) is a summand inside f∗ΛX , for any resolution f : X → Y .

We call E (Y,Λ) the geometric extension on Y .

Remark 1.1.3. When Λ = Q then E (Y,Λ) = IC(Y,Q), by the Decomposition
Theorem (see Proposition 1.5.11).

The stalks of the geometric extension record behaviour which “has to be
there in any resolution”. Indeed, the proper base change theorem and Theorem
1.5.1 immediately imply:

Corollary 1.1.4. Suppose Λ is a field. For any resolution f : X → Y one has

dimHi(E (Y,Λ)y) ≤ dimHi(f−1(y),Λ)

for any y ∈ Y .

Remark 1.1.5. This corollary can be used to rule out the existence of resolutions
of a particular form. For example, if E (Y,Λ)y has non-zero stalks in degrees
0 and 2m for some m, then Corollary 1.1.4 and the existence of fundamental
classes implies that any resolution of Y has to have fibres dimension at least
m over y (see Example 1.5.17). This can be used to prove the non-existence of
semi-small resolutions: if E (Y,Λ) is not perverse, then no semi-small resolution
of Y exists (see Proposition 1.5.18).

Remark 1.1.6. Theorem 1.5.1 has also been obtained by McNamara [77, §5],
with a very similar proof. McNamara also noticed Remark 1.1.5 and uses this
observation to rule out the existence of semi-small resolutions of certain Schubert
varieties.

In the setting of Decomposition Theorem, it is essential to take local systems
into account. This is already the case for a smooth morphism with smooth target
f : E → X, where the Decomposition Theorem implies that f∗QE splits as a
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direct sum of its cohomology sheaves Hi(f∗QE), and each of the resulting local
systems (with stalks Hi(f−1(x),Q)) are semi-simple.

When we take more general coefficients, it is no longer true that the direct
image along a proper smooth morphism has to split, nor that the resulting local
systems are semi-simple. It is easy to produce examples where the monodromy
fails to be semi-simple when the coefficients are not of characteristic 0. The
failure of the direct image to split in the derived category is a little more subtle.
We give examples of this failure to split for P1-bundles (where the non-splitting
is connected to the Brauer group) in Example 1.5.23.

This motivates us to consider geometric local systems. A geometric local
system L on U is a smooth and proper map with smooth target

V
L−→ U.

The following generalises Theorem 1.1.2 to take local systems into account:

Theorem 1.1.7. (see Theorem 1.5.6) Assume Y is irreducible. For any dense

(smooth) U ⊂ Y and geometric local system V
L−→ U there is a unique complex

E (Y,L ) ∈ Db
c(Y,Λ) satisfying:

1. j∗E (Y,L ) ∼= L∗ΛU where j : U ↪→ Y denotes the inclusion;

2. E (Y,L ) has no summands supported on the complement of U ;

3. for any proper map with smooth source f : X → Y which agrees with L
over U , E (Y,Λ) occurs as a summand of f∗ΛX .

We call E (Y,L ) the geometric extension of the geometric local system
L .

Remark 1.1.8. We explain what Theorem 1.5.6 says when Λ = Q. By the
(smooth case of the) Decomposition Theorem, L∗QV is isomorphic to the di-
rect sum of its intersection cohomology sheaves,

⊕
H i(L∗QV )[−i], and each

cohomology sheaf H i(L∗QV ) is semi-simple. If we define IC(L∗QV ) to be the
direct sum of the groups H i(L∗QV ))[−i], then E (Y,L ) = IC(Y,L∗QV ), by
the Decomposition Theorem.

Remark 1.1.9. Again, E (Y,Λ) provides lower bounds on the cohomology of
any proper morphism extending L . We leave it to the reader to formulate an
analogue of Corollary 1.1.4 in this more general setting.

Warning 1.1.10. In contrast to the setting over Q, we prove that E (Y,L ) is not
determined by its restriction to U . More precisely, using the Legendre family of

elliptic curves, we produce two geometric local systems V ′ L ′

−−→ U and V ′′ L ′′

−−→ U
which have the same monodromy over F2, but whose geometric extensions are
not isomorphic (see Example 1.5.21).
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1.1.3 Coefficients in ring spectra

One interesting aspect of the current paper is that the results are formal: we
only need the proper base change theorem, the existence of fundamental classes,
and some finiteness to ensure the Krull-Schmidt theorem. (In the body of the
paper we axiomatise our setup as a base change formalism, and prove our
results in that setting.)

Using our formalism, we deduce that our main theorems hold with coeffi-
cients in suitable stable ∞-categories. In case the reader (like the authors) is
intimidated by this theory, we provide a few paragraphs of motivation as to why
we are interested in this level of generality.3

A major theme in homotopy theory is the consideration of generalized co-
homology theories like K-theory, elliptic cohomology, Brown-Peterson cohomol-
ogy and the Morava K-theories. One can think about all of these cohomology
theories as lenses through which to view homotopy theory: facts which are
transparent in one theory are often opaque in another. Computation plays an
enormously important role, and computations are often performed using the
fact that any map is homotopic to a fibration, which gives rise to useful spectral
sequences.

In algebraic geometry, smooth morphisms (the algebraic geometer’s fibra-
tions) are extremely rare, and an important role is played by constructible
sheaves and the six functor formalism. The spectral sequence of a fibration is re-
placed by the Leray-Serre spectral sequence, or its variants. The Decomposition
Theorem is a very powerful tool, as it allows one to conclude that the perverse
Leray-Serre spectral sequence degenerates for any proper map. Traditionally,
this formalism only encompases cohomology, homology and its variants. The
connection to cohomology is via the basic fact that the derived global sections
of the constant sheaf compute cohomology.

In homotopy theory, it has been clear for decades that one can obtain gen-
eralised cohomology as the global sections of a local object. (Indeed, by Brown
representability, the generalized E-cohomogy of X is given by homotopy classes
of maps [X,Ei], where Ei represents ith E-cohomology.) Thus it is natural to
ask: is there some theory of constructible sheaves, which would allow one to
push and pull constant E-sheaves in much the same way that one can push and
pull constant sheaves in algebraic geometry? Such a theory would unify the two
approaches to cohomology of the proceeding two paragraphs.4

Building on the fundamental work of Lurie [68, 69, 70], such a theory has
become available [95]. We believe these more general coefficients (e.g. Morava
K-theories) will provide a powerful tool to study torsion phenomena in the
topology of complex algebraic varieties, in much the same way as they have
done in homotopy theory. It is for this reason that we work in the generality
of sheaves with coefficients in certain ∞-categories. (Again, we emphasise that
we only need very formal properties from this theory, and none of its internals.)

3∞-categories are not needed in any arguments in this paper. However, ∞-categories are
needed in providing the input (the “base change formalism”) with which we work.

4For an excellent articulation of this question, see [84].
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However, we do not discuss any computations with these more general objects
in this paper. Geometric extensions in greater generality play an important role
in forthcoming work of the first author and Elias and the second author [37].
The idea of taking summands in more general (motivic) cohomology theories
also shows up in the work of Eberhardt [30, 29].

Remark 1.1.11. In §1.1.1 we discussed two routes to intersection cohomology
sheaves: one via the theory of perverse sheaves (abelian categories), and one
via the Decomposition Theorem and Krull-Schmidt (additive categories). In
the setting of the more exotic coefficients discussed above, one often encounters
periodic cohomology theories. (This is the case for K-theory, as well as all the
Morava K-theories.) It is interesting to note that (the homotopy category of)
sheaves of modules over such spectra cannot support a non-trivial t-structure,
so there is no analogue of perverse sheaves with these coefficients. Geometric
extensions, on the other hand, make sense as long as the coefficients satisfy a
Krull-Schmidt condition.

Remark 1.1.12. Above, our discussion centered on constructible sheaves (alge-
braic geometry) and generalized cohohomology (homotopy theory). Another
major motivation for the development of a sheaf theory underlying cohomology
theories is the theory of triangulated categories of motives (see [20, Introduction
§A] for an excellent historical introduction). Our results have a strong motivic
flavour, as the reader may have already sensed in our definition of a geometric
local system. It should be emphasised, however, that morphism categories in
categories of motives rarely have the finiteness conditions that we need in this
paper.

Remark 1.1.13. Ever since the discovery of intersection cohomology in the 1970s,
it has been suggested that there should be a reasonable theory of intersection
K-theory. Such a definition has recently been given by Pădurariu [83], as a sub-
quotient of a geometric filtration on K-theory. The notion of geometric extension
with coefficients in (rationalised) KU -modules provides another possible defini-
tion of intersection K-theory (see Definition 1.5.24). It would be interesting to
compare the two approaches.

One can also hope that there is some (abelian, exact, triangulated, stable
∞, . . . ) category C associated to our space X which categorifies intersection
K-theory. The current work suggests a possible route towards such a category
(at least in examples). Namely, intersection K-theory is realised as a summand
inside the K-theory of any resolution, and the isomorphisms for different res-
olutions are sometimes realised by fundamental classes of correspondences. It
would be very interesting to know if the classes realizing these isomorphisms
could be lifted to functors, inducing categorical idempotents on categories of
coherent sheaves on resolutions.

1.1.4 Motivation from Modular Representation Theory

A major motivation for the current work comes from geometric modular rep-
resentation theory. In the work of Lusztig and others, geometric methods

10



(e.g. Deligne-Lusztig theory, character sheaves, the Kazhdan-Lusztig conjec-
ture) have played a decisive role in classical (i.e. characteristic 0) representa-
tion theory. Modular geometric representation theory aims to transport these
successes to modular (i.e. mod p) representation theory (see [57, 1, 100]).

In this theory the notion of a parity sheaf has come to play a central
role. These are sheaves whose stalks and costalks vanish in either even or
odd degrees. In [58] it is proved that on many varieties arising in geometric
representation theory parity sheaves are classified in the same way as intersection
cohomology complexes. Their importance in geometric modular representation
theory appears to stem from two sources:

1. Whilst it is extremely difficult to compute with intersection cohomology
sheaves with modular coefficients, computations with parity sheaves are
sometimes possible, thanks to the role of intersection forms [58, §3]. This
computability is behind counter-examples to the bounds in Lusztig’s con-
jecture arising from unexpected torsion [99, 98] and the billiards conjecture
of Lusztig and the second author [71].

2. When establishing derived equivalences, it is often useful to have a good
class of generators whose algebra of extensions is formal. With rational
coefficients, intersection cohomology complexes often provide such objects.
When working with modular coefficients, parity sheaves seem to play the
role of “pure” objects, although it is still somewhat mysterious as to why
(see [85, 3, 4, 2]).

The main theorem of [58] relies crucially on the vanishing of odd cohomology
of the strata in a fixed stratification. These properties often hold in geomet-
ric representation theory, but can be a hindrance. For example, they can be
destroyed by passing to a normal slice.

Geometric extensions address this deficiency: parity sheaves are very often
geometric extensions. Consider a stratified variety X =

⊔
Xλ satisfying the

conditions of [58, 2.1], so that the notion of a parity sheaf makes sense. In
almost all examples of parity sheaves (for the constant pariversity) one has
nice5 resolutions

πλ : X̃λ → Xλ

such that the parity sheaf corresponding to the stratum Xλ is an indecomposable
direct summand of (πλ)∗ΛX̃λ

. It follows from Theorem 1.5.1 that the parity
sheaf coincides with the geometric extension E (Y,Λ).

Remark 1.1.14. As we remarked above, Theorems 1.5.1 and 1.5.6 provide a
partial answer to our guiding Question 1.1.1. Namely, indecomposable sum-
mands with dense support are geometric extensions. However, our theorems
say nothing about what happens on lower strata. One could hope that they are
geometric extensions, but we have very limited evidence for this claim. (The
issue is that, in contrast to the situation for IC and parity sheaves, we have no
characterisation of the geometric extension which is intrinsic to the space.) In

5i.e. even in the language of [58, §2.4]
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the setting of parity sheaves (where one does have a local characterisation in
terms of stalks and costalks) it is true that all summands are parity sheaves,
which can be considered a weak form of the Decomposition Theorem.
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1.2 Base change formalism

In this section we will describe the categorical formalism used to prove Theorem
1. This section is purely 2-categorical, and we shall proceed axiomatically to
emphasise its formal nature. The reader comfortable with the formalism of the
constructible derived category of sheaves will find nothing unfamiliar in what
follows.

From here, C will be a category with pullbacks and a terminal object ∗.

Definition 1.2.1. A base change formalism S := (S∗, S!) on C is a data of
a pair of pseudo-functors S∗, S! from C to the 2-category Cat, and a lax natural
transformation of pseudofunctors c : S! → S∗. These two functors S∗ and S!

strictly agree on objects, and the object components of c are the identity functor.
For any morphism f in C we abbreviate SX = S∗(X) = S!(X), f∗ = S∗(f),
f! = S!(f), and cf : f! → f∗ for the component of c at a morphism f in C . We
require the following:

(BC1) For all morphisms f , f∗ admits a left adjoint f∗, and f! admits a right
adjoint f !.

In view of (BC1), we say a morphism f in C is proper if cf : f! → f∗ is an
isomorphism, and étale if there exists an isomorphism f∗ ∼= f !.

For the remaining two conditions, we fix a pullback square:

X ′ X

Y ′ Y

f̃

g̃

f

g

(PS)

Our final conditions are the following:

(BC2) In (PS), if f is étale (resp. proper), then f̃ is also étale (resp. proper).

(BC3) In (PS), the induced base change morphisms

12



g∗f∗ → f̃∗g̃
∗

f̃!g̃
! → g!f!

are both isomorphisms if f is proper, or if g is étale (see Remark 1.2.4 for the
definition of these base change morphisms).

Remark 1.2.2. In many settings (constructible sheaves on complex varieties,
étale sheaves, D-modules,. . . ) one encounters a “6-functor formalism”. Usu-
ally this manifests as a collection of triangulated (or ∞−) categories, with six
functors

f∗, f!, f
!, f !,Hom,⊗

satisfying a raft of relations (see e.g. [23]). There has been recent progress
on axiomatizing what a six functor formalism is, particularly in the setting
of ∞−categories (e.g. [20, 72, 67, 41]). As far as we are aware this process
is ongoing and there is still no generally accepted definition. We need very
little from the theory, and have tried to isolate the key features we require in
Definition 1.2.1. The reader should have little trouble adapting other settings
(e.g. étale sheaves, or D-modules) to our axioms.

The following will be a recurring example throughout this paper.

Example 1.2.3. Let C be the category of complex algebraic varieties, and let
SX = Db

c(X, k) be the constructible derived category of sheaves on X(C) with
coefficients in a field k. (It is important that the derived category is used here,
since f ! does not exist in general as a functor on abelian categories.) In this
framework, the notions of étale and proper match their topological definitions,
hence are closed under pullbacks giving (BC2). Our third axiom (BC3) goes
under the name of proper base change in the literature (e.g. [61, Proposition
2.5.11].)

Remark 1.2.4. Explicitly, the data of a base change formalism is an assignment
of a category SX to each object X in C , functors f! : SX → SY and f∗ : SX →
SY for each morphism f : X → Y , and coherent isomorphisms f∗ ◦g∗ ∼= (f ◦g)∗,
f!◦g! ∼= (f ◦g)!, along with natural transformations cf : f! → f∗, satisfying some
compatibilities. We will suppress these compatibility 2-isomorphisms for f∗ and
f!, but the reader should bear in mind that they are a critical part of our input
data, as they supply the middle maps used for the base change morphisms of
(BC3):

g∗f∗
η−→ f̃∗f̃

∗g∗f∗ ∼= f̃∗g̃
∗f∗f∗

ϵ−→ f̃∗g̃
∗

f̃!g̃
! η−→ f̃!g̃

!f !f! ∼= f̃!f̃
!g!f!

ϵ−→ g!f!

1.2.1 The convolution isomorphism.

Definition 1.2.5. Consider a pull-back square, with g proper:

X ×Y X ′ X ′

X Y

g̃

f̃

g

f
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We have the following natural isomorphism of functors, which we call the con-
volution isomorphism:

Hom(f! , g∗ ) Hom(g̃∗ , f̃ ! )
τf,g
∼

This is defined as the composition of the following isomorphisms:

Hom(f! , g∗ ) → Hom( , f !g∗ ) → Hom( , f !g! ) →
→ Hom( , g̃!f̃

! ) → Hom( , g̃∗f̃
! ) → Hom(g̃∗ , f̃ ! ).

By evaluating this isomorphism on objects F in SX and G in SX′ , we obtain
the pointwise convolution isomorphism:

Hom(f!F, g∗G)
τf,g−−→ Hom(g̃∗F, f̃ !G)

Remark 1.2.6. In general, computing morphisms between the functors f! and g∗
on Y is hard, and our convolution isomorphism transforms this into a problem
with easier functors g̃∗ and f̃ ! on a more complicated space X ×Y X ′.

In what follows, it will be important to be able to study the convolution
isomorphism locally. Consider the following diagram, where j : U → Y is étale,
and all squares are pullbacks:

XU ×U X ′
U X ′

U

X ×Y X ′ X ′

XU U

X Y

g̃U

f̃U

ĵ
gU

j′

g̃

f̃

g
fU

j

j

f

The main observation of this section is that the convolution isomorphism is
étale local:

Proposition 1.2.7. The following diagram commutes, where the horizontal
maps are our convolution isomorphisms, and the vertical maps are restriction
followed by base change:

Hom(f! , g∗ ) Hom(g̃∗ , f̃ ! )

Hom(j∗f! , j
∗g∗ ) Hom(ĵ∗g̃∗ , ĵ∗f̃ ! )

Hom(fU !j
∗ , gU ∗j

′∗ ) Hom(g̃∗U j
∗ , f̃ !

U j
′∗ )

τ

≃ ≃

τ

The verification of this proposition is deferred to Proposition 1.6.4 in the
Appendix.
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1.3 Orientations and Duality

The key aspect of our main theorem (Theorem 1.5.6) is that for a map f :
X → Y with smooth source, the dense summand of f∗1X on Y is determined
by the generic behaviour of the map. To prove this, we will build a comparison
morphism for two maps that agree on an open set. The convolution isomorphism
of Definition 3.3.3 turns this problem into giving a suitable morphism g̃∗1X →
f̃ !1X′ . In this section we will describe how to produce such a map via cycle
maps and fundamental classes.

1.3.1 Topological reminders

We begin with a leisurely topological reminder of these concepts in the con-
structible setting. The reader already familiar with this story is invited to skip
to §1.3.3, in which we summarise the key idea of the paper.

Let our category C be that of complex algebraic varieties, and our base
change formalism that of Example 1.2.3, i.e., X 7→ Db

c(X, k). This base change
formalism succinctly encodes the topological homology and cohomology of alge-
braic varieties with coefficients in k. We may express the following cohomology
groups of X in terms of our functors and the terminal map t : X → ∗. Letting
1 be k on the point ∗, we have

Hi(X, k) ∼= Hom(1, t∗t
∗1[i]), (1.1)

Hi
! (X, k) ∼= Hom(1, t!t

∗1[i]), (1.2)

Hi(X, k) ∼= Hom(1, t!t
!1[−i]), (1.3)

H !
i(X, k) ∼= Hom(1, t∗t

!1[−i]). (1.4)

Remark 1.3.1. The reader will notice that we are not using the standard notation
for Borel Moore homology (see e.g. [61]) and compactly supported cohomology.
We have opted to use ! instead of BM or c, as we find this notation more attrac-
tive, and it avoids poor notation later when we discuss more general cohomology
theories.

In this setting, our categories SX carry some crucial extra structure. They
are monoidal and triangulated, with monoidal unit t∗1, and shift functor [1].
Throughout, we call t∗1 the constant sheaf on X, denoted 1X . Similarly, the
object t!1 is the dualising sheaf of X, denoted ωX .

Remark 1.3.2. For a singular space X, the dualising sheaf ωX is not generally
concentrated in a single degree in Db

c(X, k), so cannot be interpreted as a sheaf
in the usual sense.

Example 1.3.3. In our running example of the constructible derived category
X 7→ Db

c(X, k) (Example 1.2.3) t∗1 is the constant sheaf kX . When working in
the setting of a general base change formalism, we will use 1X := t∗1 to denote
the unit object, however when dealing with sheaves we will often stick to the
more standard kX .
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A crucial property of these objects is that for a topological manifold M of
dimension n, the dualising sheaf ωM is locally isomorphic to 1M [n], a shift of
the constant sheaf. To see this, consider the standard triangle associated to the
inclusion j : M \ {x} ⊂ M :

j!j
!ωM −→ ωM −→ ix∗i

∗
xωM −→ j!j

!ωM [1].

In view of (1.3), applying Hom(1, t! ) gives the long exact sequence:

Hi(M \ {x}) −→ Hi(M) −→ Hom(1, i∗xωM [−i]) −→ Hi−1(M \ {x})

We may therefore identify the −ith cohomology of the stalk of ωM at x with the
local homology group Hi(M,M \ {x}). Since M is a manifold, it follows by a
standard excision argument [47, §3.3] that this sheaf has stalks k concentrated
in degree −n. By the local homogeneity of manifolds, we see that this sheaf is
locally constant, and thus locally isomorphic to 1M [n].

This also shows that the manifold M is k-orientable in the usual sense (see
e.g. [47], Chapter 3) of having compatible local generators of these homology
groups if and only if we have an isomorphism 1M [n] ∼= ωM in Db

c(M,k). In view
of the definition of Borel-Moore homology (1.1), this is equivalent to a class in
this group that restricts to a generator of each local homology group. We call
such a class in Borel-Moore homology a fundamental class of M .

There is another, more algebro-topological perspective on orientability. This
more general notion of orientability is defined for vector bundles over arbitrary
spaces. We say that an n-dimensional real vector bundle V over B is orientable
with respect to a cohomology theory E if there exists a Thom class u in

En
! (V ) ∼= En(D(V ), S(V ))

that restricts to a generator of En(D(Vx), S(Vx)) for all x in B, where D(V )
and S(V ) denote the associated disk and sphere bundles of V .

Thinking about other cohomology theories, there is an analogous base change
formalism for algebraic varieties6 for any cohomology theory represented by
an A∞ ring spectrum E [95]. This category is the homotopy category of the
∞-category of constructible sheaves of E-module spectra on X, and we will
denote7 it by Db

c(X,E−Perf). This category encapsulates the E-(co)homology
of X in exactly the same manner as Db

c(X, k) does for k-(co)homology. We say
a manifold M is E-orientable if we may find a fundamental class in

E!
n(M) := HomDb

c(M,E−Perf)(1M , t!1[−n])

6There are significant point set topological requirements for the existence of the whole
formalism, they are satisfied in our case since our spaces are locally compact and conically
stratifiable, and all maps are suitably stratifiable. For a fixed stratification, see Lurie [69],
and for the functors see Volpe [95]. We aren’t aware of a source for constructibility in this
generality, though this should follow same lines as the constructibility proofs in [61].

7We have opted for this suggestive notation to encourage the parallel with the constructible
derived category.
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restricting to a generator in all local homology groups En(M,M \ {x}). By
the previous discussion, we see that E-orientability for M is equivalent to the
existence of an isomorphism between the E dualising sheaf ωM and 1M [n]. An
E-orientation is then a choice of such an isomorphism 1M → ωM [−n]. The
set of orientations is in general an AutEM

(1M ) torsor, so orientations are not
unique. For a smooth manifold M , E-orientability in our sense is equivalent to
the Thom class E-orientability of the stable normal bundle of M [87, Chapter
5, Theorem 2.4].

1.3.2 Orientability and fundamental classes for a general
base change formalism.

With this in mind, let us now work with an arbitrary base change formalism S
on the category of algebraic varieties. In order to emphasise the analogy with
sheaves we will refer to objects of SX as sheaves. In addition, we assume the
following conditions.

1. Each SX is triangulated with shift [1].

2. Over a point, S∗ has a distinguished object 1.

3. For any irreducible X with terminal map t : X → ∗, the object t∗1 is
indecomposable.

4. Topologically proper (resp. étale) maps are proper (resp. étale) for S in
the sense of Definition 1.2.1.

As before, we define the constant sheaf and dualising sheaf :

1X := t∗1

ωX := t!1

These will be the most important objects in what follows.

Definition 1.3.4. An irreducible variety X of dimension d is S-smooth if there
exists an isomorphism in SX :

1X → ωX [−2d].

Remark 1.3.5. When SX = Db
c(X,Q), then S-smoothness is the same as rational

smoothness. More generally, when SX = Db
c(X, k), S-smoothness of a variety

is the same thing as k-smoothness (see e.g. [60, §1] and [39, §8.1]).

Remark 1.3.6. For a general multiplicative cohomology theory E, X is E-smooth
if and only if it is E-orientable. By our earlier discussion (see [87, Chapter
5, Theorem 2.4]), this is equivalent to the existence of Thom class in the E
cohomology of the Thom spectrum of the stable normal bundle of X. The
Thom spectrum perspective helps make the problem of deciding E-smoothness
more concrete and amenable to computation.
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Definition 1.3.7. A base change formalism S is smoothly orientable if all
smooth irreducible varieties are S-smooth.

Example 1.3.8. The constructible derived category (i.e. X 7→ Db
c(X, k)) is

smoothly orientable. To see this, note that smooth varieties are topological
manifolds of twice their algebraic dimension, so it suffices to check that they
are k-orientable in the usual sense. This can be seen by noting that a smooth
manifold is Z-orientable if and only if some transition cocycle of its tangent
bundle can be taken to have positive determinant. Since the tangent bundle of
X admits an almost complex structure, we can take a presenting cocycle where
locally, these transition functions sit inside GLn(C) ⊂ GL2n(R). Since GLn(C)
is connected, all of these real matrices have positive determinant, giving the
desired orientability.

The following examples show that deciding smooth orientability can be sub-
tle and geometrically meaningful.

Example 1.3.9. Let KU denote the spectrum representing the cohomology
theory of complex K-theory. Then the base change formalism X 7→ Db

c(X,KU−Perf)
is smoothly orientable. To see this, note that any real vector bundle admitting
a complex structure is KU -orientable, via the explicit construction of a Thom
class in [6, III, § 11]. The stable normal bundle of a complex manifold then
admits a complex structure, so we see that the stable normal bundle of X is
KU orientable, so X is KU -smooth.

Example 1.3.10. Let S denote the sphere spectrum. Then a manifold is S-
orientable if and only if its stable normal bundle admits a framing, that is, is
trivialisable. In particular, most complex algebraic varieties are not S-smooth.
For instance, if X is a smooth surface, the first Pontryagin class of its tangent
bundle is equal to three times its signature, by Hirzebruch’s Signature theorem
[50]. So if X has nonzero signature of its intersection form, e.g., CP2, then its
tangent bundle is not stably trivial, so neither is its stable normal bundle. In
particular, the base change formalism of sheaves of S-modules on all varieties is
not smoothly orientable.

We are interested in invariants of singular varieties, so we want fundamental
classes/orientations for singular varieties also. In usual sheaf theoretic fashion,
for a Zariski open j : U → X in a space X, we refer to the functor j∗ ∼= j! as
restriction to U .

Definition 1.3.11. An S-orientation of an irreducible variety X is a morphism

γ : 1 → ωX [−2dX ]

which is an isomorphism over the smooth locus of X. We say X is orientable
with respect to S if an S-orientation of X exists.

The following proposition shows that we can use resolution of singularities
to orient all irreducible varieties.
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Proposition 1.3.12. If S is smoothly orientable, and X admits a resolution of
singularities f : X̃ → X, then X is orientable.

Proof. Let f : X̃ → X be a resolution of singularities. Then f is proper, and X̃
is nonsingular, with f an isomorphism over the smooth locus U of X. Since X̃
is smooth, we have an orientation:

γ : 1X̃ → ωX̃ [−2dX ].

Pushing this forward gives:

f∗γ : f∗1X̃ → f∗ωX̃ [−2dX ].

Composing with the unit and counits of our adjunctions gives

1X → f∗1X̃ → f∗ωX̃ [−2dX ] −→ f!ωX̃ [−2dX ] → ωX [−2dX ].

By base change (BC3), the composite γX : 1X → ωX [−2dX ] restrict to isomor-
phisms over U , giving the desired orientation of X.

Remark 1.3.13. The definitions of this section are based on purely topological
realisation of algebraic varieties via their C-points, but there are natural ex-
tensions of these definitions to other settings. For instance, one could consider
real pseudomanifolds or algebraic varieties over fields more general than C. In
these settings, one would need to modify Definition 1.3.4 to reflect the struc-
ture at hand. For example, incorporating weights, an orientation is a morphism
1X → ωX [−2dX ](dX), where (n) denotes the Tate twist.

Remark 1.3.14. For the reader who does not want to assume resolution of sin-
gularities, one can adapt the previous proof to show that if X admits a degree n
alteration in the sense of de Jong [24], and n is invertible in the ring HomS∗(1,1),
then X is orientable.

The importance of orientations cannot be overstated in our context, since
they allow us to produce morphisms between nontrivial objects in our categories
SX , via functoriality and the convolution isomorphism.

Definition 1.3.15. For X an algebraic variety, we define the nth compactly
supported S-homology of X to be

S!
n(X) := HomSX

(1X , ωX [−n]).

This functions similarly to Borel-Moore homology in the constructible set-
ting, as the codomain of a cycle class morphism. In particular, any orientation
γ of an irreducible variety X is naturally an element of S!

2dX
(X). Like Borel-

Moore homology, these groups are covariantly functorial under proper maps
f : X → Y . This is given by the composition

Hom∗(1X , ωX) → Hom∗(f∗1X , f∗ωX) ∼= Hom∗(f∗1X , f!ωX) → Hom∗(1Y , ωY ).
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1.3.3 Why do geometric extensions exist?

Our goal is to construct a canonical extension of the constant sheaf on a poten-
tially singular variety Y . We construct this by first pushing forward the con-
stant sheaf from a resolution of singularities X → Y . We then need a method
for comparing these sheaves for different choices of resolution. We will con-
struct a comparison morphism between these pushforwards using the existence
of fundamental classes in our base change formalism.

We may summarise the machinery we have so far for a smoothly orientable
base change formalism S as follows.

• An S internal notion of smoothness (Definition 1.3.4).

• An S orientation/fundamental class for any variety (not necessarily smooth)
(Definition 1.3.11).

• A compactly supported S-homology group to interpret fundamental classes
in (Definition 1.3.15).

We may now interpret our convolution isomorphism in this context. Let X
and X ′ be smooth (proper) resolutions of Y , with a chosen orientation of X ′,
such that we have a pullback square:

X ×Y X ′ X ′

X Y

g̃

f̃

g

f

(1.5)

We will use the functoriality of our setup to construct morphisms between f!1X

and g∗1X′ , from the geometry of fundamental classes on the fibre product.
Specifically, the convolution isomorphism and our choice of orientation of X
yields the following isomorphism:

Hom(f!1X , g∗1X′) ∼= Hom(g̃∗1X , f̃ !1X′) ∼=
∼= Hom(1X×Y X′ , f̃ !ωX′ [−2dX ]) = S!

2dX
(X ×Y X ′).

Via this isomorphism, we may translate compactly supported S-homology classes
of X ×Y X ′ into maps from f!1X to g∗1X′ .

Since f, g are resolutions of Y , if U is smooth locus of Y , we have a canonical
diagonal ∆(U) inside X×Y X

′, with closure Z := ∆(U). Choosing an orientation
of Z, we may push forward the associated fundamental class (1.3.15) to get a
class in S!

2d(X ×Y X ′). This gives the desired comparison morphism between
f!1X and g∗1Y .

In the next section, we will show that in the presence of finiteness condi-
tions, we may deduce an isomorphism between the “dense” summands of these
pushforwards, giving our main theorem.
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Remark 1.3.16. In the special case of the constant sheaf, there is an alternate
argument8. Take our base change formalism to be X 7→ Db

c(X,E−Perf), for a
suitably finite (see Definition 1.4.1) smoothly orientable cohomology theory E.
One may show (see [87, Chapter 5, Theorem 2.13]) that for a map f : X → Y
of E-orientable manifolds, the induced map E∗(Y ) → E∗(X) is injective, and
upgrade this to the fact that 1Y → f∗1X is split injective in Db

c(X,E−Perf).
Now for singular Y , given two such resolutions Xi, we may resolve the diagonal
component of their fibre product X1 ×Y X2. From this splitting of the con-
stant sheaf for maps of E-orientable smooth manifolds, we see that the dense
summand of fi∗1Xi

occurs as a summand of all resolutions. This argument
also shows that isomorphism classes of summands of f∗1X over all resolutions
f : X → Y form a sort of “lattice”: given any two resolutions fi : Xi → Y for
i = 1, 2, there exists a third resolution g : Z → Y such that all summands of
f1∗1X1

and f2∗1X2
also occur inside g∗1Z .

1.4 Finiteness and Krull-Schmidt categories

In the previous section we constructed a comparison morphism between f∗1X

and g∗1X′ using an orientation of the irreducible component of the diagonal
within X ×Y X ′. In any smoothly orientable base change formalism, it follows
formally that this comparison morphism is an isomorphism over U . In this
section, we will introduce the finiteness conditions needed to show that this
isomorphism over U lifts to an isomorphism on “dense summands” of f∗1X

and g∗1X′ . The finiteness constraint we need is that the categories of the base
change formalism are Krull-Schmidt, which allows the use of the crucial Lemma
1.4.2.

For completeness, we recall the definition of a Krull-Schmidt category:

Definition 1.4.1. A category C is Krull-Schmidt if it is additive with finite
sums, and each object is isomorphic to a finite direct sum of indecomposable
objects, each with local endomorphism rings.

This condition is easily checked in some sheaf theoretic contexts since it is
implied by the following three conditions:

• The “ring of coefficients” R := End(1∗) is a complete local ring.

• For any F ,G in SX , the group HomSX
(F ,G ) is a finitely-generated R-

module.

• The category SX has split idempotents.

These conditions imply that the endomorphism ring of any indecomposable
object is a local R-algebra. In particular these conditions are satisfied for the
constructible base change formalism X 7→ Db

c(X,Λ), when Λ is a field or com-
plete local ring. We will discuss this case in more detail in the appendix.

8We learnt this argument from Roman Bezrukavnikov.
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The primary result about Krull Schmidt categories we will use is the follow-
ing automorphism lifting property.

Lemma 1.4.2. Let C be a Krull-Schmidt category, with F : C → D be an
additive functor. let A be an object with F (Ai) ̸= 0 for all nonzero summands
Ai of A, and let µ : A → A an endomorphism of A. If F (µ) = IdF (A), then µ
is an isomorphism.

Proof. We induct on the number of indecomposable summands of A, which is
finite by our Krull-Schmidt hypothesis.

As our base case, if A is a direct sum of n copies of a single indecompos-
able A0, then µ − IdA is in the kernel of the algebra morphism End(A) →
End(F (A)). This kernel is then contained in the unique maximal two sided
ideal Mn×n(J(End(A0)) of the matrix ring Mn×n(End(A0)) ∼= End(A). So µ is
in Id +J(End(A)), and is therefore an isomorphism.

Finally, we may assume that A is not indecomposable, and admits a nontriv-
ial decomposition A ∼= B ⊕ C where B and C share no isomorphic summands.
Then our morphism µ decomposes as:

µ =

[
µBB µCB

µBC µCC

]
=

[
µBB 0

0 µCC

]
+

[
0 µCB

µBC 0

]
with µXY ∈ Hom(X,Y ) for X,Y ∈ {B,C}.

By induction, this diagonal piece is an isomorphism, and since B and C share
no isomorphism classes of summands in common, the second matrix is in the
radical of End(A) (see the lines following the proof of [65, Corollary 4.4]), so µ
is an isomorphism.

Definition 1.4.3. Let F : C → D be an additive functor from a Krull-Schmidt
category C . Then an object A of C is F -dense if for all summands Ai of A we
have F (Ai) ̸= 0.

We will only use this notion with respect to j∗ for j : U → X a Zariski open
morphism to irreducible X. In sheaf theoretic contexts, this agrees with the
usual notion of having all indecomposable summands of dense support, and we
will write this as U -dense. We say an object E of SX is dense in SX if it is
U -dense for any dense Zariski open U of X.

Lemma 1.4.4. Let F : C → D be an additive functor from a Krull-Schmidt
category C . Then any object A of C has a decomposition A ∼= AF ⊕ A0, such
that AF is a maximal F -dense summand of A. This decomposition is unique up
to non-unique isomorphism.

Proof. Choose any decomposition of A into indecomposable objects Ai, and
let AF be the summand of those isomorphism types Ai with F (Ai) ̸= 0. The
isomorphism class of AF is then unique by the Krull-Schmidt property.

Proposition 1.4.5. Let A and B be objects in a Krull-Schmidt category C and
F : C → D an additive functor. If for two maps f : A → B, g : B → A,
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we have F (f) and F (g) are mutually inverse isomorphisms, then f , g induce
isomorphisms f ′, g′ of F -dense summands:

AF A B BF

f ′

iA f πB

BF B A AF

g′

iB g πA

Proof. First, note that F (πA) and F (iA) are both isomorphisms, since A0 is
sent to zero under F by maximality of AF and similarly for B. Thus, our maps
f ′ := πB ◦ f ◦ iA and g′ := πA ◦ g ◦ iB , induce mutually inverse isomorphisms
F (f ′) and F (g′) under F . So Lemma 1.4.2 applied to the compositions of these
gives that f ′ ◦ g′ and g′ ◦ f ′ are both isomorphisms. By elementary category
theory, this then yields that f ′ and g′ are both isomorphisms, as was to be
shown.

We can now state our main theorem.

Theorem 1.4.6. Let X,X ′ be smooth, irreducible varieties with proper, surjec-
tive maps f : X → Y , g : X ′ → Y , and j : U → Y a Zariski open in Y . Assume
that the pullbacks fU , gU : XU , X

′
U → U are isomorphic over U :

XU X ′
U

X X ′

U

Y

f |U

≃

g|U

f g

j

Then for any smoothly orientable, Krull-Schmidt base change formalism S the
U -dense summands of f∗1X and g∗1X′ in SY are isomorphic.

Proof. Let the isomorphism over U be α : XU → X ′
U . Then we choose ori-

entations of the spaces involved such that we have the following commutative
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diagram:

Hom(fU ∗1XU
, gU ∗1X′

U
)

Hom(f∗1X , g∗1X′)

S∗,2d(XU ×U X ′
U )

S∗,2d(X ×Y X ′)

∼

∼
[∆α]∋

[∆α]

∈
α∗1

∈

That we can do this is Proposition 1.6.5 in the appendix. Transporting the
fundamental class of ∆α across the convolution isomorphism then yields a map

f∗1X → g∗1X′ .

By commutativity, this restricts to α∗1 over U . By symmetry there also exists a
morphism back, which gives the two morphisms restricting to mutually inverse
isomorphisms over U . We may then use Lemma 1.4.5 to conclude that these
induce isomorphisms on the U -dense summands.

Corollary 1.4.7. In the setting of Theorem 1.4.6, the dense summands of f∗1X

and g∗1X′ are isomorphic.

Proof. The dense summands of these are the dense summands of the U -dense
summands of f∗1X and g∗1X′ , hence are isomorphic.

Remark 1.4.8. One may note that the use of a Zariski neighbourhood was es-
sential in this proof, to be able to take a closure of the graph of the isomorphism
over U . If one uses a simple étale neighbourhood instead, one must push for-
ward this cycle, and the induced map is an isomorphism only if the degree of
the étale morphism is invertible in the ring of coefficients.

1.5 Applications

In this final section we will see some applications of Theorem 1.4.6. This theorem
allows one to construct canonical objects in SX for any smoothly orientable base
change formalism that play the role of intersection cohomology sheaves in the
Q constructible setting, and parity sheaves in the Fp constructible setting.

Before considering the general case, let us consider the smoothly orientable
base change formalism of constructible sheaves with coefficients in a field or
complete local ring Λ. As an immediate corollary of Theorem 1.4.6, we obtain
the following:

Theorem 1.5.1. Let Y be an irreducible variety. There exists a complex
E (Y,Λ) ∈ Db

c(Y,Λ) characterised up to isomorphism by the following:
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1. E (Y,Λ) is indecomposable and its support is dense;

2. E (Y,Λ) is a summand inside f∗ΛX , for any resolution f : X → Y .

We call E (Y,Λ) the geometric extension on Y .
As we explained in §1.1.4, in the special case of a cellular resolution of

singularities, this geometric extension will be a parity sheaf [58]. We may think
of this object as a “geometrically motivated” minimal way to extend the constant
sheaf on the smooth locus of Y . In particular, since this summand occurs for any
resolution of singularities, we obtain the following corollary for Fp coefficients.

Corollary 1.5.2. For any resolution of singularities π : X → Y , for all y ∈ Y
with fibre Xy = π−1(y), we have the inequality

dimHi(EFp(Y )y) ≤ dimHi(Xy,Fp).

Proof. By definition, we know that EFp(Y )y is a summand of i∗yπ∗1X . The
cohomology of i∗yπ∗1X then computes the cohomology of the fibre by proper
base change, giving the result.

We now consider the case of a general smoothly orientable, Krull-Schmidt
base change formalism, and higher dimensional local systems. First, we need
the definition of a higher dimensional local system in this context.

Definition 1.5.3. A geometric local system L on a smooth irreducible

variety U is a smooth, proper, surjective map V
L−→ U . The restriction of L to

an open U ′ → U is the base change of this morphism.

The following proposition lets us interpret compactification of morphisms as
a method to “extend” geometric local systems.

Proposition 1.5.4. For any geometric local system V
L−→ U over U a (smooth

Zariski) open in Y , there exists a proper morphism X
L̃−→ Y from smooth X

such that we have a pullback square:

V X

U Y

L L

j

Proof. The proof may be summarised in the following diagram:

X

V Ỹ

U Y

L

L g

j
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First, we compactify the composition j ◦L as V → Ỹ
g−→ Y , where g is proper.

Choosing a resolution of singularities X → Ỹ , as V is smooth, the map V → Y

factors through X. Then composing with g gives the desired map X
L̃−→ Y .

From here we will let S denote a Krull-Schmidt, smoothly orientable base
change formalism, satisfying the following condition for geometric local systems:

(D) If L : V → U is a geometric local system, then all summands of L∗1
have dense support.

Remark 1.5.5. This condition holds in all examples we have discussed so far,
and we do not know of any situation where it fails to hold. In sheaf theoretic
or algebro-topological situations, this follows from homotopy invariance.

With these preliminaries, we have the following general version of Theorem
1.5.1.

Theorem 1.5.6. Let Y be an irreducible variety, S a smoothly orientable,
Krull-Schmidt base change formalism satisfying condition (D). For any dense

U ⊂ Y and geometric local system V
L−→ U there is a unique object E (Y,L ) ∈

SY satisfying:

1. j∗ES(Y,L ) ∼= L∗1V where j : U ↪→ Y denotes the inclusion;

2. ES(Y,L ) is dense, with no summands supported on a proper closed subset
of Y ;

3. for any proper map with smooth source f : X → Y which restricts to L
over U , ES(Y,L ) occurs as a summand of f∗1X .

Definition 1.5.7. We define the geometric extension of L on Y to be
the object ES(Y,L ). When the local system is the identity, we call this the
geometric extension on Y . We call the groups

E i
S(Y ) := HomSY

(1Y ,ES(Y )[i])

the geometric S-cohomology groups of Y .

Remark 1.5.8. For a fixed S, one may replace smoothness with S-smoothness
(see Definition 1.3.4) in the preceeding definitions, with slightly more general
results.

One can think of these groups E i
S(Y ) concretely as unavoidable summands

of the S-cohomology of any resolution of singularities of X.

Warning 1.5.9. In general, the object ES(Y,L ) depends on the geometry of the

map V
L−→ U , not just on the object L∗1V in SU . An example with further

discussion is given in Example 1.5.21.

We will now give some properties of these geometric extensions.
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Proposition 1.5.10. If L and L ′ on U and V agree on U ∩ V , then:

ES(Y,L ) ∼= ES(Y,L ′).

In particular, for f : X → Y a proper map with smooth source, the dense
summand of f∗1X depends only on the generic behaviour of the map f .

Proof. The geometric extensions arise as summands of f∗1X , g∗1X′ for com-
pactifications f, g of these geometric local systems. Since these two maps agree
on a dense open U ∩ V , their dense summands are isomorphic by Theorem
1.4.6.

Consider a complex L isomorphic to
⊕

i L
i[−i] for local systems L i on

a dense subvariety of the smooth locus of Y . Define IC(Y,L ) to be the sum⊕
i IC(Y,L i)[−i] (see Remark 1.1.8).

Proposition 1.5.11. If S is the constructible derived category of sheaves over
Q, then the geometric extension is the intersection cohomology complex of sheaves:

ES(Y,L ) ∼= IC(Y,L∗Q).

Proof. By the Decomposition Theorem [9], the pushforward f∗1X is a direct
sum of semisimple perverse sheaves. On the smooth locus of Y , this sheaf is the
local system f∗1V . By the classification of simple perverse sheaves ([9] or [1,
Theorem 3.4.5]), we see that the dense summand of f∗1V is IC(Y,L∗1V ).

In general, like intersection cohomology sheaves, the geometric extension
gives a way to interpolate between S-cohomology and noncompact S-homology.

Proposition 1.5.12. For any resolution of singularities f : Ỹ → Y , chosen
orientation γ of Ỹ , and choice of split inclusion ES(Y ) → f∗1Ỹ , we obtain a
sequence:

1Y → ES(Y ) → ωY [−2dY ]

such that the composite is an orientation of Y .

Proof. We have the following maps of sheaves on Y :

1Y → f∗1Ỹ → ES(Y ) → f∗1Ỹ
∼= f!1Ỹ

∼= f!ωỸ [−2d] → ωY [−2d]

These maps are all isomorphisms over U , so the composite is an orientation of
Y .

The following shows that for S-smooth varieties, the geometric extension is
just the constant sheaf.

Proposition 1.5.13. If S is a smoothly orientable base change formalism, and
Y is S-orientable, then the geometric extension is the constant sheaf on Y :

ES(Y ) ∼= 1Y
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Proof. For a resolution π : Ỹ → Y of Y , and chosen isomorphism γ : 1Ỹ →
ωỸ [−2d] of Ỹ , then we claim that the pushforward orientation of Y is an isomor-
phism 1Y → ωY [−2d]. This morphism is between indecomposable, isomorphic
objects, and is thus an isomorphism over U , so is an isomorphism by the Krull-
Schmidt property. Composing with the inverse isomorphism ωY [−2d] → 1Y

then gives the following commutative diagram:

1Y ES(Y )

1Y ωY [−2d].

The result then follows from Proposition 1.4.5.

The maps of Proposition 1.5.12 induce the following interpolation morphisms

S∗(Y ) → E ∗
S (Y ) → S!

2dY −∗(Y ).

This interpolation perspective also lets us extract a canonical invariant of
our singular space, the (co)kernel of the induced map S∗(Y ) → E ∗

S (Y ).

Definition 1.5.14. Let Y be irreducible and projective. The geometrically
pure S-cohomology of Y is the quotient

S∗
gp(Y ) :=

S∗(Y )

ker(S∗(Y ) → E ∗
S (Y ))

Similarly, the geometrically non-pure S-cohomology of Y is this kernel

S∗
gnp(Y ) := ker(S∗(Y ) → E ∗

S (Y )).

That these objects are independent of the choices involved in their construc-
tion is the content of the following Lemma.

Lemma 1.5.15. Let Y be irreducible, with two resolutions of singularities

fi : Ỹi → Y for i ∈ {1, 2}.

Assume for each map we have a chosen a split projection onto the geometric
extension of Y :

fi∗1
πi−→ ES(Y ).

Then there exists an isomorphism β of ES(Y ) such that the following diagram
commutes:

1 f1∗1 ES(Y )

f2∗1 ES(Y )

π1

β

π2
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Proof. Resolving the diagonal irreducible component of the fibre product Y1×Y

Y2, we may find a third resolution of singularities of Y , dominating fi:

Ỹ3 Ỹ1 ×Y Ỹ2

Y

f3

Then for any choice of split projection f3∗1 → ES(Y ), we have the following
commutative diagram for i ∈ {1, 2}:

1 fi∗1 f3∗1

ES(Y ) ES(Y )
βi

These maps βi defined as the composition are isomorphisms by Theorem 1.5.1,
so their composite β−1

2 ◦ β1 gives the desired isomorphism.

Remark 1.5.16. In the case of Q-constructible coefficients, the geoemtrically
pure (resp geometrically non-pure) is precisely the pure (resp non-pure) coho-
mology in the mixed Hodge structure on H∗(Y,Q). To see this, recall that the
mixed Hodge structure on a singular, projective variety is given by resolving Y
by a smooth simplicial hypercover, and the pure component is the first quotient
of the associated spectral sequence [25].

Example 1.5.17. Let us consider the geometric extension on the space An
C/±

1 with constructible coefficients over a field k of characteristic two. We will
show that the geometric extension over k is exactly π∗1 for a resolution π that
contracts a divisor over 0. We will thus have nonzero cohomology in degree
2(n − 1) in the stalk over 0. This gives the geometric consequence that any
resolution of singularities of this space must contract a divisor, by Corollary
1.5.2.9

Consider the following diagram of blowups and quotients:

Bl0(An
C) Pn−1

C

An
C Bl0(An

C)/± 1 Pn−1
C

An
C/± 1 {0}

≃

π̃
≃ ≃

π

9As explained to us by Burt Totaro, this may also be easily seen algebro-geometrically by

the fact that our space An/ ± 1 is Q-factorial, as follows. Let X
π−→ An/ ± 1 be a resolution

of singularities, and D a chosen very ample Weil divisor on X. As An/ ± 1 is Q factorial,
a positive multiple nπ∗(D) of the Weil divisor π∗(D) is Cartier. Pulling this back gives the
Cartier divisor π∗(nπ∗(D)) on X. If our exceptional fibre has codimension at least 2, then
this divisor on X would be nD, but then D cannot be very ample, as its sections do not
separate points in the exceptional fibre.
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The space Bl0(An
C) via its projection map to Pn−1

C is the total space of the
tautological bundle, and this quotient Bl0(An

C)/ ± 1 is obtained by taking the
quotient under the inversion map on the (vector space) fibres. So we see the
maps with ≃ are homotopy equivalences of topological spaces, and Bl0(An

C)/±1
is smooth. So we obtain a resolution of the singular space An

C/±1, with domain
homotopic to Pn−1

C . On our base, 0 is the unique singular point, and the fibre
over this singular point in this resolution is Pn−1

C . Its complement is An
C−{0}/±

1, which is naturally homeomorphic to the space RP2n−1 × R.
We claim that the geometric extension is just the pushforward π∗1. To show

this, we need to check that this sheaf is indecomposable, which is equivalent to
showing that it has no skyscraper summands at the singular point.

To check this, consider the compactly supported cohomology of the open-
closed triangle for the inclusion of the singular point:

j!j
!π∗1 → π∗1 → i∗i

∗π∗1
+1−−→

By base change, the ompactly supported cohomology of j!j
!π∗1 is the com-

pactly supported cohomology of An
C−{0}/±1 ≃ RP2n−1×R. Similarly, by base

change, the sheaf i∗i
∗π∗1 computes the cohomology of the fibre, which is Pn−1

C .
The middle term computes the compactly supported cohomology of the total
space, which is a complex line bundle over Pn−1

C , and so gives the cohomology
of Pn−1

C , shifted by 2. Applying the compactly supported cohomology functor
Hom∗

k(1, t! ) yields an exact triangle:

H∗
! (RP2n−1 × R, k) H∗−2(Pn−1

C , k)

H∗(Pn−1
C , k)

+1

Since the characteristic of k is two, H∗
! (RP2n−1×R) is nonzero in all degrees

between 1 and 2n inclusive. So this +1 degree map must be injective by the
parity of the cohomology of CPn−1. Thus, this extension is maximally nonsplit
and there can be no skyscraper sheaf summand. So this π∗1 is indecomposable
in characteristic two, giving the desired nonzero cohomology in the stalk. (This
may also be seen using intersection forms (see [58, §§3.2-3.3]). The refined
intersection form is identically zero modulo 2.)

The previous example shows that geometric extensions for the constructible
base change formalism over fields need not be a perverse, and by similar ideas
we obtain the following geometric consequence.

Proposition 1.5.18. If for some field k, the geometric extension of Y over
k is not perverse up to shift in Db

c(Y, k), then Y does not admit a semismall
resolution.

Proof. For such an Y , the geometric extension is a summand of π∗1Ỹ for any

resolution π : Ỹ → Y . Since the geometric extension is assumed to not be
perverse, no resolution can be semismall.
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The following is an immediate corollary of Theorem 1.5.6, though we suspect
there is a more direct way to see the result.

Proposition 1.5.19 (Zariski trivial is cohomologically trivial.). Let f : X → Y
be a smooth proper morphism between smooth varieties. Then if f is Zariski
locally trivial, then f∗1X is the trivial local system on the fibre for any smoothly
orientable base change formalism.

Proof. Let F be a fibre of this morphism. Then if f−1(U) ∼= F ×U , then f∗1X

is isomorphic to the geometric extension of the constant F local system over U .
But the trivial family F × X → X also gives the geometric extension, giving
the result.

Remark 1.5.20. By a similar argument, if f is étale locally trivial, then f∗1 is
trivial in any base change formalism with coefficients of characteristic zero.

By Proposition 1.5.11, over Q, the geometric extension EQ(Y,L ) is de-
termined by the Q local system L∗1V on U within Y , being isomorphic to
IC(Y,L∗1V ). The following example shows that this is exceptional behaviour,
and that geometric extensions in general are not determined by the S-local
systems L∗1V . They require the map.

Example 1.5.21 (The Legendre family of elliptic curves). Consider the follow-
ing projective family Et of elliptic curves

X A1
C × P2

C

A1
C

π
pr

given by:
Y 2Z = X(X − Z)(X − tZ).

Here t is the coordinate on A1
C, and we view this family inside A1

C × P2
C. This

family is smooth away from t ∈ {0, 1}. The total space of this family has two
isolated singular points, the nodes of the nodal cubics in the fibres over t = 0
and t = 1. These singular points have tangent cone isomorphic to the cone on
a smooth conic. Blowing up these two singular points resolves the singularities,
giving the resolved family

X̃
π̃−→ A1

C.

For this new map, the fibres over t ∈ {0, 1} are each the union of two rational
curves intersecting in two points transversely. (This is type I2 in Kodaira’s
classification of elliptic fibres [64]. This is often called the “double banana”
configuration.) So for the constructible base change formalism with coefficients
in k, the stalks i∗t of π̃∗1 are given by:

H∗ 0 1 2
i∗0π̃∗1 k k k⊕2

i∗1π̃∗1 k k k⊕2

i∗t π̃∗1 if t ̸= 0, 1 k k⊕2 k
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The monodromy of this family is nontrivial only in the middle degree:

H1(Et, k) ∼= k2.

One may then compute (see e.g. [18, Part 1]) that the monodromy of a small
loop around either singular fibre over Z is similar to[

1 2
0 1

]
.

Thus, we observe that this monodromy action is trivial if the characteristic of
k is two, and in this case the associated local system on A1

C \ {0, 1} is trivial.
We note however that the geometric extension of this local system is always
nontrivial, as a trivial local system E × A1

C has two copies of k[−1] in its stalk
over its singular fibres, rather that the one copy in our family.

This example therefore shows that the geometric extension of a geometric
local system cannot be deduced from just the knowledge of π̃∗1 restricted to
the open subset A1

C \ {0, 1}. This example also lets us observe the failure of the
local invariant cycle theorem in characteristic p, as the specialisation map

H1(E0) → H1(Et)
µ

is not surjective.

Remark 1.5.22. One may construct families of counterexamples as follows. Let
π : X → A1 be proper with smooth source, smooth over A1 \ {0}, such that the
nth power base change of π has smooth total space X̃n.

X̃n X

A1 A1

πn π

z 7→zn

Then the associated monodromy representation of πn has monodromy the nth
power of the monodromy of π. This allows one to trivialise the monodromy if
the order is finite, dividing n.

Another feature of the decomposition theorem in the Q coefficient setting is
that the pushforward f∗1X is semisimple. This fails for more general coefficients,
and can already be seen with smooth, projective maps with mod p coefficients.
This result and its proof do not require geometric extensions, but we’ve decided
to include it as we are not aware of any examples of this phenomenon in the
literature.

Example 1.5.23 (A non-semisimple geometric local system). Let S be the F2

constructible formalism, and let π : E → X be an algebraic (étale local) P1
C

bundle over a smooth space X, with nontrivial Brauer class in H3(X,Z). For
instance, one may take the tautological bundle over an algebraic approximation
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of the classifying space BPGL2(C) (see e.g. [8]). Then π∗1E is an extension of
1X by 1X [2], classified by an element of

Ext1(1X ,1X [2]) = H3(X,F2).

This element is the reduction modulo 2 of the associated Brauer class in H3(X,Z),
so does not vanish in this quotient, and gives the desired indecomposable local
system. One may construct counterexamples more generally using the fact that
if f : X → Y is any map, and the induced map H∗(Y,Fp) → H∗(X,Fp) is not
injective, then 1 → f∗1 cannot be split injective in Db

c(X,Fp).

Thus far in this section we have been considering applications for the con-
structible derived category with field coefficients, but it is worth emphasising
that there are other examples, which have been shown to be relevant to geo-
metric representation theory.10

In particular, there is now an established theory, with a six functor formal-
ism, for modules over any A∞ ring spectrum. Let’s consider the ring spectrum
KUp, p completed complex K theory. This is the ring spectrum that repre-
sents the cohomology theory X 7→ K∗(X) ⊗Z Zp on finite CW complexes X,
where K0(X) is the usual Grothendieck group of complex vector bundles on
X. The formalism of KUp modules then gives rise to a smoothly orientable,
Krull-Schmidt base change formalism for p completed complex K theory KUp,
see Appendix 1.6.1.

By Theorem 1.5.6, we may then define the geometric extension for p com-
pleted K theory.

Definition 1.5.24. For an irreducible variety Y , the KUp geometric extension
is the sheaf of KUp modules EKUp

(Y ). The geometric K-theory groups at p
are defined to be the homotopy groups of this indecomposable sheaf of KUp

modules:
E ∗
KUp

(Y ) := π−∗(EKUp(Y )).

We end with some natural questions regarding these geometric K groups.

Question 1.5.25. We have natural maps K∗(Y ) → E ∗
KUp

(Y ) for all p, and by
Lemma 1.5.15, the kernel of these maps are independent of our choices. We
might call elements in this common kernel nonpure classes in (integral) K-theory.
Is there a geometric, vector bundle description of these classes? The nontorsion
part will be visible as nonpure classes in Q cohomology, what about the torsion?

One may also use the rationalised K theory spectrum KUQ in the preceding
definitions. In this case, the groups we obtain are just ordinary intersection
cohomology, since in rational cohomology, geometric extensions are just inter-
section cohomology, and the Chern character gives an isomorphism of E∞ ring

10The most famous examples are Kazhdan and Lusztig’s computation of the equivariant K-
theory of the Steinberg variety [63] and Nakajima’s computation of the equivariant K-theory
of quiver varieties [81]. Note that both computations can be interpreted as the computation
of an endomorphism of a direct image with K-theory coefficients.
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spectra ch : KUQ ∼= HQ. Though the groups are not new, this alternate descrip-
tion of intersection cohomology via K theory leads to the natural question of
whether these geometric extensions can be categorified. Our main result gives,
for a fixed base space Y , for any resolution X → Y , an idempotent endomor-
phism of K∗(X) ⊗ Q which cuts out EKUQ(Y ), and this image is independent
of the resolution. Now specialise to the case where X and Y admit compat-
ible affine pavings, so X ×Y X also admits such a paving. This occurs for
instance in the theory of Schubert varieties with Bott-Samelson resolutions. In
this situation, the rationalised Grothendieck group of coherent sheaves on X is
isomorphic to the rationalised topological K group of X, via the Chern charac-
ter to Chow groups. The fundamental classes of subvarieties of X×X naturally
act as endomorphisms of Db

coh(X) as kernels of Fourier-Mukai transforms, and
this naturally categorifies the action on K∗(X). This leads to the following
(imprecise) question.

Question 1.5.26. Let X be an affine paved resolution of Y . Does there exist
an idempotent endofunctor EX/Y of Db

coh(X) such that the image of EX/Y is
an invariant of Y , which decategorifies to the idempotent cutting out EKUQ(Y )
inside K∗

Q(X)? Furthermore, is this category independent of the resolution X?

1.6 Appendix

1.6.1 KUp modules

Here we will give a short introduction to the smoothly orientable base change
formalism of KUp modules. We will start with ordinary topological K theory.
This is a cohomology theory built from the Grothendieck group of complex
vector bundles over X:

X 7→ K0(X) := Gr(V ecC/X).

This is the zeroth of a series of functors Ki, which form a cohomology theory
in the sense of satisfying the Eilenberg-Steenrod axioms (except the dimension
axiom). Bott’s periodicity theorem ([13], also see [48]) implies that this coho-
mology theory is represented by a two periodic sequential spectrum KU with
component spaces:

KU2i
∼= Z×BU

KU2i+1
∼= U.

Here U is the infinite unitary group, and BU is the union of the infinite complex
Grassmannians BU(n). The tensor product on vector bundles gives a homotopy
coherent commutative multiplication law on this spectrum, so KU is naturally
an E∞-ring.

The (higher) coherence of this multiplication law allows one to define a well-
behaved ∞-category of module spectra. This ∞-category is stable, so it can be
thought of as an enhancement of its triangulated homotopy category.
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For any stable ∞-category C, we have a notion of sheaves on a space X
valued in C. We will not define this precisely, but in rough terms it gives an
object for each open set, a morphism for each inclusion of open sets, a homotopy
between the compositions for each pair of composable inclusions, and so on, such
that an analogue of the sheaf condition holds. See chapters 6 and 7 of [68] for
a comprehensive treatment of this sheaf theory.

The ∞-category of such C-valued sheaves on a space X is stable. If one
restricts to suitable, locally compact spaces with well-behaved maps between
them, such as algebraic varieties with algebraic maps, then we obtain the whole
six functor formalism for C-valued sheaves, see e.g. [95]. Furthermore, one may
restrict to constructible C-valued sheaves. Constructibility is then preserved
under these six functors, due to the good topological properties of algebraic
maps. We will not need the inner workings of this construction. The following
example shows why such a formal black box can still be useful.

Example 1.6.1. Consider Example 1.5.17, interpreted within the K-theoretic
framework. This whole example is formal, until we apply compactly supported
cohomology to obtain the triangle:

H∗
c (RP2n−1 × R, k) H∗−2(Pn−1

C , k)

H∗(Pn−1
C , k)

+1

If we instead used K theory, we would obtain the triangle:

K∗
c (RP2n−1 × R) K∗−2(Pn−1

C )

K∗(Pn−1
C )

+1

Then one may show formally that the vertical arrow is multiplication by the
Thom class of the KU orientable line bundle O(2), and that compactly sup-
ported K-theory of a compact space times R is the ordinary K-theory shifted
by one. Since the Thom class is 1− 2[H], and we know the K theory of CPn−1,
this lets us easily compute the K theory of RP2n−1.

1.6.2 Localisation at p

We wish to work with Krull-Schmidt categories everywhere, so we need to lo-
calise the K theory base change formalism to obtain KUp modules. This is a
formal procedure, essentially given on integral objects by tensoring with the
p-adic integers Zp every place one sees a K group. For instance, to build the
associated cohomology theory, we simply tensor with Zp. That this preserves
the property of being a cohomology theory is immediate from flatness of Zp over
Z, so this functor gives the associated spectrum KUp representing it.
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We round out this section with a proof that KUp modules are a base change
formalism on algebraic varieties.

Proposition 1.6.2. The base change formalism Y 7→ Db
c(Y,KUp) of sheaves of

constructible KUp module spectra is a smoothly orientable Krull-Schmidt base
change formalism on complex algebraic varieties, which satisfies condition (D).

Proof. First, the fact that this is a base change formalism entails many com-
patibilities which follow from the construction, and Lurie’s proper base change
theorem (Chapter 7, §3 of [68]). One may find a streamlined proof of these
properties in [95]. For orientability, note that orientability is just an existence
statement for elements in KBM

2d (X) ⊗Z Zp. In particular, this is implied by the
orientability of integral K-theory on complex manifolds, see Example 1.3.9. To
check condition (D), note that density holds trivially if the fibre bundle is trivial,
and for any two points x, y we may choose a contractible neighbourhood Ux,y

of x and y. Restricting our geometric local system to Ux,y gives a topologically
trivial bundle, giving the density result. It remains to check the Krull-Schmidt
property of this base change formalism. We first claim it suffices to check the
following conditions11.

• The “ring of coefficients” Zp[t, t−1] := End(1∗) is a graded complete local
ring.

• For any F ,G in Db
c(X,KUp), the group Hom∗(F ,G ) is a finitely gener-

ated graded Zp[t, t−1] module.

• The category Db
c(X,KUp) has split idempotents.

To see that these suffice, first note that the endomorphism algebra of any inde-
composable object is a finite graded Zp[t, t−1] module by the second condition.
The graded version of the idempotent lifting lemma (Corollary 7.5, [34]), and
splitting of idempotents implies the endomorphism ring of any indecomposable
object is local.

It remains to check that these conditions hold for sheaves of KUp modules.
The first condition is immediate by Bott Periodicity, as these are the homo-
topy groups of KUp. For the finiteness of the second condition, since Zp[t, t−1]
is Noetherian, one may apply open closed decomposition triangles to reduce
to the case of morphisms between locally constant KUp modules on a smooth
variety. We then can find a finite good cover of contractible open sets trivial-
ising these KUp modules, and an induction with the Mayer-Vietoris sequence
gives the result. Finally, to check idempotent completeness, we may assume our
sheaves of KUp modules are constructible with respect to a fixed stratification
λ. For a fixed stratification λ, we have the associated exit path ∞-category
EPλ,∞(X), and we may identify the category of λ constructible sheaves of KUp

modules with the functor category [EPλ,∞(X),KUp−Perf] (see Theorem A.9.3
[69]). As KUp−Perf is accessible, this functor category is accessible (see [68]
Proposition 5.4.4.3), and thus since this functor ∞-category is small, accessibil-
ity is equivalent to idempotent completeness (see Corollary 5.4.3.6 [68]).

11This is slightly different to the conditions in §1.4, though the proof is the same.
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1.6.3 Commuting diagrams

In this section we prove the existence of the compatibility diagrams for the
convolution isomorphism 3.3.3.

This can be broken into two distinct parts, the more formally 2-categorical
Proposition 1.6.4, and the orientation compatibility, Proposition 1.6.5.

Remark 1.6.3. A general method for proving diagrams of this form may be
found in Chapter 3 of this thesis, what follows is the original proof.

Let us first recall the setup. Our space Y is irreducible, with Zariski open
set U , and X,X ′ are two smooth spaces over Y . The following diagram will be
our reference for the maps involved in the convolution isomorphism.

XU ×U X ′
U X ′

U

X ×Y X ′ X ′

XU U

X Y

g̃U

f̃U

ĵ
gU

j′

g̃

f̃

g
fU

j

j

f

Our first proposition is the following:

Proposition 1.6.4. The following diagram commutes, where the horizontal
maps are our convolution isomorphisms, and the vertical maps are restriction
followed by base change:

Hom(f! , g∗ ) Hom(g̃∗ , f̃ ! )

Hom(j∗f! , j
∗g∗ ) Hom(ĵ∗g̃∗ , ĵ∗f̃ ! )

Hom(fU !j
∗ , gU ∗j

′∗ ) Hom(g̃∗U j
∗ , f̃ !

U j
′∗ )

τ

≃ ≃

τ

Our orientation compatibility is the following:

Proposition 1.6.5. There exist orientations of ∆α and X ×Y X ′ such that
the following diagram exists and is commutative, where the fundamental class
of ∆α restricted to XU ×U X ′

U maps to α∗1 under the associated convolution
isomorphism.
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Hom(fU ∗1, gU ∗1)

Hom(f∗1, g∗1)

S∗,2d(XU ×U X ′
U )

S∗,2d(X ×Y X ′)

∼

∼
[∆α]∋

[∆α]

∈
α∗1

∈

For notational convenience, in the proof of this proposition we will use ( , )
to denote morphism sets, and we will only use f, g and j, noting that the
decorations are uniquely determined by the location within the diagram.

Proof. We first prove Proposition 1.6.4. We may expand the diagram in Propo-
sition 1.6.4 into the following:

(f!, g∗) ( , f !g∗) ( , g∗f
!) (g∗, f !)

(j∗f!, j
∗g∗) ( , f !j∗j

∗g∗) ( , g∗j∗j
∗f !) (j∗g∗, j∗f !)

(f!j
∗, g∗j

′∗) ( , j∗f
!g∗j

∗) ( , j∗g∗f
!j∗) (g∗j∗, f !j∗)

Only the commutativity of the middle square is not standard, and its commu-
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tativity follows from the commutativity of the following diagram:

( , f !g∗) ( , g∗f
!) ( , g∗j∗j

∗f !)

( , f !g!) ( , g!f
!)

( , f !j∗j
∗g!) ( , j∗j

∗f !g!) ( , j∗j
∗g!f

!) ( , j∗g∗j
∗f !)

( , j∗f
!j∗g!) (j!, j!f !g!) (j!, j!g!f

!) (j∗, g∗j
!f !)

( , j∗f
!g!j

∗) (j!, f !j!g!) (j!, g!j
!f !) (j∗, g!j

!f !)

( , j∗f
!g∗j

∗) (j!, f !g!j
!) (j!, g!f

!j!) (j∗, g!f
!j!) ( , j∗g∗f

!j∗)

( , j∗g!f
!j!)

The commutativity of the internal faces are all standard compatibilities of base
change and naturality.

It remains to prove Proposition 1.6.5. This entails proving the commutativ-
ity of the diagram, and for compatible choices of orientation, that the restriction
of [∆α] to S!

2dX
(XU ×U X ′

U ) corresponds to α∗1 under the convolution isomor-
phism.

To show the existence of this diagram, we evaluate on the constant sheaf,

and use the chosen orientation 1
γ−→ ωX [−2d] of X to give the identifications

with S∗,2d(X ×Y X ′).

Hom(f∗1, g∗1) Hom(f!1, g∗1) Hom(g̃∗1, f̃ !1) Hom(1, f̃ !ω[−2d]) S∗,2d(X ×Y X ′)

Hom(fU ∗1, gU ∗1) Hom(fU !1, gU ∗1) Hom(g̃∗U1, f̃
!
U1) Hom(1, f̃ !

Uω[−2d]) S∗,2d(XU ×U X ′
U )

γ

γU

Here the commutativity of the second square is Proposition 1.6.4. Thus it
remains to prove the identification of the fundamental class along this isomor-
phism.

Proposition 1.6.6. Given an isomorphism α over U , such that XU , X
′
U are

smooth:
XU X ′

U

U

α

f g
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Then for a choice of orientation γ of XU , and induced compatible orientation of
∆α, the element [∆α] in H2d(XU ×U X ′

U ) corresponds to α∗1 in Hom(f∗1, g∗1)
via the convolution isomorphism induced by γ. We may also assume that this
orientation of ∆α arises as restriction from an orientation of ∆α.

Proof. We first construct the orientations required by choosing an orientation
of ∆α via resolution of singularities. We may then restrict this to ∆α, and
transport structure to XU to get our desired compatible orientations. From
here all convolution morphisms and fundamental classes are with respect to this
choice.

First, let’s show that this fundamental class morphism [∆α] : 1 → ωXU×UX′
U

[−2d]
is isomorphic (after whiskering) to an evaluation on the constant sheaf of a mor-
phism of functors. That is, there are canonical morphisms of functors

g̃∗ → ∆∗ → ∆! → f̃ !

such that the following diagram commutes, and the composite is the fundamen-
tal class in H2d(XU ×U X ′

U ):

1 g̃∗1 ∆!1 f̃ !1

∆∗1 ∆!ω∆[−2d] f̃ !ω∆[−2d] ωX1×X2 [−2d]

The commutativity of the rightmost triangle follows from the fact that our
orientations were chosen compatibly.

This reduces the problem to a coherence problem for pseudofunctors, so
consider the following diagram.

Id g̃∗∆α∗ g̃∗∆α! g̃∗f̃
!

Id g̃!∆α! g̃!f̃
!

f !f! f !f!g̃!∆α! f !f!g̃!f̃
!

f !g! f !f!g̃!∆!∆
!f̃ ! f !g!f̃!f̃

!

f !g! f !g!g̃!∆!∆
!f̃ ! f !g!f̃!∆!∆

!f̃ ! f !g! f !g∗
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Going clockwise around the diagram gives the mate of [∆α], by the previous dis-

cussion, while going anticlockwise yields the mate of the morphism f!
α!−→ g! →

g∗ which equals the composite f! → f∗
α∗−−→ g∗, giving the desired compatibility.

All squares in this diagram commute by naturality, or using that S! is a
pseudofunctor. Only the curved identity morphism is not immediate, this is
f !g! applied to the following diagram:

Id g̃!∆!∆
!f̃ ! f̃!∆!∆

!f̃ !

(f̃ ◦ ∆)!(f̃ ◦ ∆)! f̃!f̃
!

Id

This then commutes by the definition of the horizontal isomorphisms, and the
general unit compatibilities of pseudofunctors.
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Chapter 2

The real point of geometric
extensions

2.1 Introduction

In this chapter we will explore some applications of geometric extensions to real
algebraic varieties and the mod two Hecke category. Our first application is a
definition of a real geometric extension, Theorem 2.7.1, which we may summarise
as follows:

Theorem 2.1.1. Let Y be an irreducible variety defined over R. On its space
of real points Y (R) there exists a canonical complex of sheaves E (Y (R),F2) in
Db(Y (R),F2). This real geometric extension is characterised as a canonical
summand of f∗1X(R) for any resolution of singularities f : X → Y .

This is a real variant of the main construction of Chapter 1, and has a sim-
ilar proof. This construction gives a definition of “mod two real intersection
cohomology” for real algebraic varieties and provides an answer to a fourty year
old question due to Goresky and Macpherson [44, Q.7] of whether such a con-
struction exists. Our construction has the expected properties of intersection
cohomology, namely it has Poincare duality and recovers the cohomology of a
small resolution if one exists, see Proposition 2.7.3. Our sheaf theoretic de-
scription differs from the stratification-based approach of McCrory-Parusiński
[76], and full Poincare duality shows that our resulting (co)homology groups are
different.

Our main application of this construction holds in the setting of Schubert
varieties in the flag variety F := G/B of a split reductive group over R. In this
setting, we may recognise the graded additive category generated by these real
geometric extensions as a variant of the mod two Hecke category. This is the
content of the second theorem of this chapter, Theorem 2.7.4.

Theorem 2.1.2. The category generated by real geometric extensions on the
real Schubert varieties in F (R) is equivalent to the even part of the non-equivariant
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mod two Hecke category H (G,F2). Interpreting this even Hecke category as
even shifts of mod two parity sheaves on F (C), this equivalence divides all de-
grees by two.

This theorem is a corollary of the following observations:

• The morphisms in the Hecke category may be described as Borel-Moore
homology classes in the fibre products of complex points of Bott-Samelson
resolutions of Schubert varieties.

• For real varieties, fundamental classes mod two yield a realisation functor
taking the Chow groups of a variety X to the Borel-Moore homology
groups of its real points:

CH∗(X) → H∗(X(R),F2)

For the affine paved varieties we are considering, both real and complex
homology realisations yield isomorphisms:

CH∗(X) ⊗ F2 → H∗(X(R),F2)

CH∗(X) ⊗ F2 → H2∗(X(C),F2)

We may prove Theorem 2.7.4 from these facts as follows. Our first observation
allows us to interpret the morphisms in the Hecke category as homology classes
of fibre products of (complex) Bott-Samelson maps. Our second observation
lets us interpret these homology classes as mod two Chow groups, and then re-
interpret these as fundamental classes in mod two homology of the associated
real varieties. Our first theorem then realises these sheaf theoretic idempotents
as real geometric extensions on the B(R) orbits on the real points of F .

Remark 2.1.3. We have opted for the simplest versions of the proceeding the-
orems. The arguments of this chapter are easily generalisable to the parabolic
setting, and one may incorporate torus equivariance by using T -equivariant
Chow groups of Edidin and Graham [33]. We plan to revisit the constructions
of this chapter in this greater generality in future work.

These observations are well known to experts, but we believe the combi-
nation of them has not been noticed before. On may find a more sophisti-
cated treatment of the motivic perspective in geometric representation theory
in Eberhardt-Stroppel [32], and find a treatment of the motivic aspects of the
convolution isomorphism in Hanamura [46]. Our primary resource for inter-
section theory is Fulton’s classic text [40],and a comprehensive treatment of
compatibilities for the real realisation functor may be found in Hornbostel-
Wendt-Xie-Zibrowius [52].

Our aim is to give an exposition of the main ideas for the non-expert. We will
start with an overview of intersection theory from a topological point of view,
then explain how this formalism leads to motivic ideas in the setting of algebraic
varieties. We will then define the Hecke category, and understand some of its
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alternate presentations. In the final section we combine these observations to
obtain our desired theorems. We invite the reader familiar with motivic ideas,
geometric representation theory, and Bott-Samelson resolutions to skip to the
final Section 2.7.

Notation

When dealing with algebraic varieties, we will default to working within the
category of schemes, and use X(R), X(C) to refer to the associated topological
spaces of real and complex valued points. For us, the functor H∗ is always
Borel-Moore homology, we will not be using the usual (compactly supported)
variant of homology, and we will default to F2 coefficients when left unspecified.

2.2 Intersection theory and fundamental classes

In this section we will motivate our main constructions by first discussing topo-
logical intersection theory. Let us work within the classical setting of manifolds,
and consider the functor of mod two Borel-Moore homology1:

M 7→ H∗(M,F2)

For our purposes, the fundamental property we will need is that every con-
nected n manifold2 M has a canonical fundamental class [M ] in Hn(M). If
M admits a triangulation, this class is the sum of all top dimensional simplices
in M .

We will need three key functoriality properties of Borel-Moore homology.
The first property we will need is covariant functoriality for proper maps. For
a closed k submanifold i : N ↪→ M , we may push forward the fundamental class
of N to obtain i∗[N ] in Hk(M). This construction shows that the homology
groups of M are geometrically rich, full of potential fundamental classes of
submanifolds. The geometry of M is further reflected in properties of these
homology groups. Namely, they admit a canonical bilinear intersection pairing:

Hr(M,F2) ⊗Hs(M,F2)
∩−→ Hr+s−n(M,F2)

This pairing reflects the geometry within M , for when two submanifolds A and
B inside M intersect transversely, this product yields the fundamental class of
their intersection, suitably interpreted (see [15, Ch.6, Sec.11]):

[A] ∩ [B] = [A ∩B]

Analysing this intersection product in a tubular neighbourhood retract of A and
B leads to intersecting homology classes of A and B within M to get a class in
A ∩B.

1Also known as noncompact homology, or homology with closed supports, see chapter 5 of
[16] for a comprehensive treatment.

2Our manifolds are taken to have no boundary.
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This is our second key functoriality, a refined intersection product, de-
noted ∩r. This pairing refines the previous pairing, in that the following com-
mutes:

Hr(A,F2) ⊗Hs(B,F2) Hr+s−n(A ∩B,F2)

Hr(M,F2) ⊗Hs(M,F2) Hr+s−n(M,F2)

∩r

∩

Our final functorial property is an external product with fundamental
classes:

⊠[M ] : H∗(X) → H∗+n(X ×M)

This map has a simple description on fundamental classes of submanifolds,
one just takes the product with M :

[A] 7→ [A×M ]

These three functorial properties of:

1. proper covariant functoriality,

2. refined intersection products,

3. external products

enable a fundamental categorical construction. Let Y be a base space (poten-

tially not a manifold), and consider manifolds X over Y , X
f−→ Y , with f proper.

Then we construct a graded category with these objects X
f−→ Y by setting:

Hom(X,X ′) := H∗(X ×Y X ′)

The covariant functoriality, external product and refined intersection prod-
uct then enable a composition law, given by the following when X2 is of dimen-
sion d2:

Hr(X1 ×Y X2) ⊗Hs(X2 ×Y X3) → Hr+s−d2(X1 ×Y X3)

A ◦B := p13∗(A⊠ [X3] ∩r [X1] ⊠B) (2.1)

Here p13 is the projection:

X1 ×Y X2 ×Y X3 → X1 ×Y X3

This construction is familiar in the setting of geometric representation theory
[19], and we will refer to it as the topological convolution category of Y .
The six functor formalism lets us describe this category more explicitly. For
each object f : X → Y , we may push forward the constant sheaf on X to get
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the object f∗1X on Y . The convolution isomorphism of 3.3.3 then yields the
isomorphism:

Hom∗(f∗1, g∗1) ∼= H∗(X1 ×Y X2) (2.2)

This isomorphism allows us to extend the objectwise assignment

{X f−→ Y } 7→ f∗1X

to a fully-faithful embedding of this convolution category into the (derived)
category of sheaves on Y .

2.3 Chow groups and motives

We will now interpret this topological setup within the more rigid framework of
algebraic geometry. In this algebraic setting, the role of Borel-Moore homology
is played by the Chow groups of a variety. For a variety X, the Chow groups of X
are the universal groups of “fundamental classes of subvarieties” within X. This
abelian group is generated by classes of irreducible subvarieties, with relations
given by rational equivalence, an algebraic version of homotopy equivalence.
We refer the reader to Fulton’s text [40] for a thorough treatment of these
constructions.

These Chow groups have some of the same formal properties as Borel-Moore
homology, though the proofs are more difficult. One may easily show that
Chow groups are covariant under proper morphisms, and have a natural external
product map:

⊠[X] : CH∗(Y ) → CH∗+d(Y ×X)

Remarkably, they also satisfy our second functoriality property; they carry a
refined intersection product.

Theorem 2.3.1 (Fulton). Let X be a smooth, irreducible variety of dimension
d, with A, B subvarieties of X. Then there exists a refined intersection product

CHr(A) ⊗ CHs(B)
∩r−−→ CHr+s−d(A ∩B)

with the same formal properties as the refined intersection product in Borel-
Moore homology.

These three properties enable the same construction of the convolution cate-
gory of smooth varieties proper over the base Y , with morphisms given by Chow
groups of fibre products, and composition law given by formula 2.1. This gives
the category of Chow motives over the base Y , denoted CHM(Y ), and was
first introduced by Corti-Hanamura in [22].

Remark 2.3.2. We should warn the reader that these constructions lead to very
hard questions. For instance, when our base Y is a point, interpreting a smooth
variety X in this category essentially gives the (Chow) motive of X, and basic
conjectures of Grothendieck regarding the structure of this category remain wide
open [?].
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The formal structure of fundamental classes in homology mirrors that of
Chow groups, and viewing complex algebraic varieties as topological spaces,
we are led to a comparison between these notions. We will axiomatise such a
comparison as a natural transformation between these functors, preserving the
relevant structure.

Definition 2.3.3. A homology realisation defined on a class of varieties is a
graded functor F∗ to abelian groups with our three functorial structures of

1. covariance along proper maps,

2. a refined intersection product,

3. an external product,

along with the data of a natural transformation from CH∗ to F∗, compatible
with these structures.

Remark 2.3.4. The notion of realisation of a motive has different meanings at
different levels of generality. Our simple definition is easy to state and captures
what we need, but the reader should bear in mind that this is an ad hoc definition
for expository purposes. We refer the reader to André [5] for a full treatment
of motives.

Observe that covariant functoriality implies that data of such a natural trans-
formation is entirely determined by its values on the tautological fundamental
classes [X] in CHd(X) for X a d-dimensional irreducible variety. Thus, we may
view a homology realisation as a homology theory for algebraic varieties, which
has fundamental classes with their expected intersection theoretic structure.
Chow groups may then be seen as an initial such homology theory, and other
realisations may be used to shed light on this universal case.

Remark 2.3.5. One important fact to keep in mind is that not every “homology
theory” with fundamental classes gives a homology realisation in our sense.
One example of this is given by K-theory. Indeed, one still has an associated
homology theory with fundamental classes [28], but there is no natural map from
the Chow groups. As an explicit example, one may compute the K-theoretic
intersection product of divisors of degree d, e in Pn. In the Chow group, this
intersection depends only on the product d · e, but the K-theoretic product sees
strictly more information [28, Ex.21.9].

In this chapter we will use two particular realisations. The first of these is
the well-known complex realisation.

Definition 2.3.6. The complex realisation functor with k coefficients is defined
for varieties over C. Its value on a variety X is given by the even degree part
of Borel-Moore homology with k coefficients of the complex points of X:

F∗(X) := H2∗(X(C), k)

This realisation maps the fundamental class of the d-dimensional variety X to
its fundamental class in H2d(X(C), k).

47



That this is a realisation is Fulton’s Theorem 19.2 in [40]. The other reali-
sation we will be considering is less well known, the real mod two realisation.

Definition 2.3.7. The real mod two realisation functor, defined for varieties
over R, is given by the mod two Borel-Moore homology of the real points:

F∗(X) := H∗(X(R),F2)

This realisation maps the fundamental class of the d-dimensional variety X to
a fundamental class in Hd(X(R),F2) if X has a real smooth point, and zero
otherwise.

We will briefly sketch the argument for why this is a realisation. This claim
can be broken into the following two facts:

1. For X an irreducible d-dimensional real variety whose smooth locus has a
real point, there exists a fundamental class in Hd(X(R),F2) restricting to
the fundamental class over the smooth locus.

2. This assignment of fundamental classes is compatible with our three func-
torial structures.

For this first point, we may show the existence of fundamental classes di-
rectly. First, observe that if a d-dimensional irreducible variety X has a real
smooth point, then the real points X(R) of its smooth locus are a d-dimensional
manifold. We then need to show that the fundamental class in top dimensional
homology extends to all of X(R) from this smooth locus. This is shown topo-
logically in Borel-Haefliger [11, Sec. 3], but we may give a short proof using
resolution of singularities. Choosing a resolution f : X̃ → X, we may push
forward a fundamental class of X̃ down to X. By base change, this class is seen
to extend the fundamental class over the smooth locus.

For the second fact, one needs to check compatibility with our three functo-
rial constructions. One may check directly that this real realisation is compatible
with pushforwards and external products, but the refined intersection product
is more subtle. A proof of this fact may be found in [11] as Theorem 5.33. We
would also like to direct the reader to [52] for a modern sheaf theoretic treatment
of these real cycle map compatibilities.

2.4 Comparison maps and affine paved varieties

The comparison map associated to a homology realisation describes how much
of a variety’s homology is generated by fundamental classes of subvarieties. In
this section we recall the notion of an affine paving, a condition that ensures
the homology is entirely described by fundamental classes of subvarieties.

3This theorem is stated in terms of homology with supports on the ambient smooth variety.
This is in turn equivalent to the homology of the supporting subsets, see the discussion in
section 1.5
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Definition 2.4.1. An affine paving of a variety X over a field k is a finite family
of closed subvarieties Xi with Xi ⊂ Xi+1 and X = ∪Xi, where each Xi+1 \Xi

is isomorphic to an affine space of some dimension Ani .

Remark 2.4.2. The reader should be aware that there are different, often very
similar definitions of affine pavings in the literature, e.g. [40, 53].

One major upshot of working in an affine paved context is that homology is
entirely controlled by algebraic fundamental classes. This is the content of the
following well known lemma, which is fundamental to the motivic approach to
geometric representation theory. This lemma and its proof are very similar to
Proposition 5.3 in [52].

Lemma 2.4.3. If a variety X admits an affine paving, then its Chow groups
admit a Z basis given by closures of cells in the paving, and the following maps
are each isomorphisms:

⊕
CH∗(X) →

⊕
H2∗(X(C),Z) (2.3)⊕

CH∗(X) ⊗ F2 →
⊕

H2∗(X(C),F2) (2.4)⊕
CH∗(X) ⊗ F2 →

⊕
H∗(X(R),F2) (2.5)

Proof. We will prove these claims by induction on the number of affine cells,
using the localisation sequences in Chow groups and Borel-Moore homology (see
[40, Sec. 1.8] for Chow groups and [16, Ch. 5,Sec. 5] for the topological case).
One may show without difficulty that our realisation maps commute with the
open restriction maps, so we obtain a morphism of sequences:

CH∗(Xi) CH∗(Xi+1) CH∗(Xi+1 \Xi) 0

0 H2∗(Xi,Z) H2∗(Xi+1,Z) H2∗(Xi+1 \Xi,Z) 0

γ

α

β

α′′ α′

γ′ β′

Let us first see that this bottom sequence is exact. The surjectivity of β′ follows
by taking a fundamental class of the closure Xi \Xi+1 in Xi+1. The injectivity
of γ′ follows from the long exact sequence in Borel-Moore homology. As α is an
isomorphism by induction, this implies γ is injective, so the middle map α′′ is
an isomorphism by induction and the snake lemma. This shows our first map
(2.3) is an isomorphism, and the proof provides the desired Z basis. The second
isomorphism (2.4) then follows from the universal coefficient theorem.

For the real realisation, note that the long exact sequence in mod two Borel-
Moore homology reduces to a short exact sequence by the same argument as the
complex case (the surjectivity of β′). Our comparison map then gives a mor-
phism of short exact sequences, and is therefore an isomorphism by induction
and the snake lemma.
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Remark 2.4.4. In general, determining the image of the comparison map associ-
ated to a realisation is a very difficult problem. For instance, under the complex
realisation with Q coefficients, this is the subject of the Hodge conjecture [66],
and under the ℓ-adic realisation of ℓ-adic homology [79], the description of this
image is the subject of the Tate conjecture [92].

2.5 Bott-Samelson resolutions and Soergel bi-
modules

In this section we give the definition of Schubert varieties and recall their basic
properties. We will also define the crucial Bott-Samelson resolutions of their
singularities.

Let G be a split reductive algebraic group defined R, with B a Borel sub-
group, and chosen maximal torus T ⊂ B. The associated flag variety F := G/B
is smooth and projective, and the left B action on F has finitely many orbits.
These orbits are indexed by the Weyl group W := NG(T )/T , giving the Bruhat
decomposition:

G/B =
∐

w∈W

BwB/B

We define the Schubert variety Xw to be the closure BwB/B of the
Schubert cell BwB/B in F . Each orbit BwB/B is isomorphic to an affine space
Aℓ(w) of dimension the Coxeter length of w. The Bruhat decomposition of F is a
stratification of F , so choosing a compatible total order yields affine pavings for
Schubert varieties. These Schubert varieties are highly singular in general, and
their singularities encode many fundamental representation theoretic quantities,
one key example may be found in Kazhdan-Lusztig [62].

Example 2.5.1. Let us look at an example of a Schubert variety. Take the
group SL4, with Borel the group of upper triangular matrices and torus the
diagonal matrices. We may realise G/B as the space of complete flags

0 = V0 ⊂ V1 ⊂ V2 ⊂ V3 ⊂ V4 = V

with dim(Vi) = i inside a four dimensional vector space V . The Weyl group in
this case is the symmetric group S4 generated by standard generators si. The
Schubert variety indexed by the Weyl group element

w = s1s3s2s3s1

is given by the space of flags

{0 ⊂ V1 ⊂ V2 ⊂ V3 ⊂ V } with V2 ∩ ⟨e1, e2⟩ ≥ 1

This five dimensional variety is singular, with the two dimensional singular locus
consisting of those flags with V2 = ⟨e1, e2⟩.
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Schubert varieties have explicit resolutions of singularities, coming from the
multiplicative structure of the group G. Within the group G, for each simple
reflection si, we have a minimal parabolic subgroup Pi containing B and si.
We may view this subgroup Pi as a B × B invariant subvariety of G, and its
quotient under the right action is the Schubert variety Xsi , itself isomorphic
to the projective line P1. These subgroups enable us to resolve Xw. First, one
chooses a reduced expression for w, which we denote with an underline:

w = s1s2s3..sn

Definition 2.5.2. The Bott-Samelson resolution of Xw associated to the re-
duced expression

w = s1s2...sn

is the map induced by multiplication:

Xw := P1 ×B ...×B Pn−1 ×B Xsn → Xw

We want to view all Bott-Samelson maps in a common context, so we com-
pose with the inclusion to the flag variety F .

Definition 2.5.3. A Bott-Samelson map to F is a Bott-Samelson resolution
of some Xw, composed with the inclusion of Xw into F .

We recall the following useful properties of Bott-Samelson resolutions, for a
proof see [17].

Proposition 2.5.4. Any Bott-Samelson map is naturally B equivariant, equiv-
ariantly projective and birational onto its image in F . The domain Xw of a
Bott-Samelson map is smooth, and gives a resolution of singularities for its
image Xw ⊂ F .

This B equivariance is key, as it ensures that the pushforward of the constant
sheaf is constructible with respect to the Bruhat stratification of F .

The last property of Bott-Samelson maps we will need is that their fibre
products admit affine pavings. This fact is known to experts, but as we struggled
to find a proof in the literature, we have opted to give a complete proof.

Proposition 2.5.5. Given two Bott-Samelson maps to F , their fibre product

Xw ×F Xu

admits an affine paving.

Proof. The strategy of the proof is to use the Bia lynicki-Birula decomposition
for appropriate one dimensional tori. This theorem [10] partitions a smooth
projective variety with Gm action with isolated fixed points into cells isomorphic
to affine spaces, each containing a unique fixed point. The cell corresponding
to a fixed point x is given by the set of points y with
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lim
λ→0

λ · y = x

In the case when this action extends to an equivariant ample line bundle,
this decomposition into cells may be ordered to give an affine paving, inherited
from an affine paving of the ambient projective bundle. In our setting of the
flag variety F , this Bia lynicki-Birula decomposition for any regular dominant
cocharacter in T is the Bruhat decomposition.

Let us first show that to give an affine paving of this fibre product, it suffices
to exhibit an affine paving of the fibre Xw,x ×Xu,x over each T fixed point x in
F . Let xB/B be a T fixed point, which we may identify with the corresponding
element of W , with associated Bruhat cell BxB/B. To describe the geometry
of this cell, recall that B splits as a semidirect product of its radical subgroup
N and the torus T :

B ∼= N ⋊ T

Our point xB/B is fixed by T , and the stabiliser of xB/B in N is

Nx = N ∩ xNx−1

with a complementary subgroup in N given by

Nx := N ∩Nxw0

where w0 is the longest element of W . Both of these subgroups Nx and Nx are
isomorphic to affine spaces, and the multiplication map yields the isomorphism
of varieties [56, Sec. 28.5]:

Nx ×Nx ∼= N

This provides an equivariant description of the Bruhat cell as an affine space,
via the following isomorphism given by multiplication:

Nx × {x} ≃−→ BxB/B

Denoting our Bott-Samelson maps by fu, fw and fu×w, the B equivariance of
these maps allows us to recognise the preimage of the cell BxB/B containing x
as a product of the fibre with Nx:

f−1
u×w(BxB/B) ∼= f−1

u×w(xB/B) ×Nx

As Nx is an affine space, we may extend our affine paving using this product.
Totally ordering our strata compatibly with the Bruhat order then glues these
affine pavings over each strata to an affine paving of the fibre product.

It remains to show that the fibre of this fibre product over a T fixed point
xB/B admits an affine paving.

First, observe that the product of two affine paved varieties is affine paved.
Given two affine paved varieties, we may take the product poset of the two
linear orderings to give a (partial) ordering of the affine spaces in the product.
Taking a compatible linear ordering of this poset gives the desired total order of

52



cells of the product. It remains to exhibit affine pavings on each of the factors
f−1
w (xB/B) ⊂ Xw and f−1

u (xB/B) ⊂ Xu.
We will construct affine pavings of these fibres using the Bia lynicki-Birula

decomposition for a suitably chosen one dimensional torus T ′ ∼= Gm on the
ambient smooth projective variety Xw.

To find this suitable torus T ′, we first need that any T fixed point xB/B in
F admits a choice of T ′′ for which the Bia lynicki-Birula cell Ux containing x is
open in F . First, we know that any dominant cocharacter works for the T fixed
point w0B/B in view of the Bruhat decomposition. We may then translate this
situation under the transitive action of W to give a suitable T ′′ for any other T
fixed point.

For the fixed point xB/B, and suitable T ′′, take T ′ to be the one dimensional
torus with opposite action, so it repels every element in Ux \{xB/B} away from
x. Taking the Bia lynicki-Birula decomposition of Xw then restricts to an affine
decomposition (and paving by T -equivariant projectivity) of f−1

w (xB/B). By
symmetry, we may also obtain an affine paving of f−1

u (xB/B), completing the
proof by our previous reductions.

2.6 The Hecke category

The Hecke category is a central object in geometric representation theory [101],
and has many different descriptions. One way of constructing this category is
as an idempotent completion of the topological convolution category of Bott-
Samelson maps to G/B.

Definition 2.6.1. The (non-equivariant) Hecke category H (G, k) of B ⊂ G
with k coefficients is the additive, graded, idempotent completion of the con-
volution category associated to Bott-Samelson maps to F . In light of the con-
volution isomorphism 2.2 we may view this as the subcategory of Db

c(F (C), k)
consisting of sums, summands and grading shifts of f∗1Xw(C) for Bott-Samelson
maps f : Xw(C) → F (C).

Remark 2.6.2. The standard Hecke category works with B equivariant sheaves
and B equivariant homology, and this leads to better formal properties such as
monoidality. For simplicity, we have opted to take this definition. In our affine
paved world, this loss of equivariance does not entail a large loss in complexity
of the objects involved. We refer the reader to [101] for a further discussion of
the Hecke category.

This Hecke category is Krull-Schmidt [100], with indecomposable objects Ew

indexed by elements of the Weyl group W (along with their graded shifts). We
may recognise these indecomposable objects from a sheaf theoretic perspective.
They may be characterised as the indecomposable summands of pushforwards of
the constant sheaf along Bott-Samelson maps (equivalently, the minimal idem-
potents in the convolution category). These are exactly the geometric exten-
sions on Schubert varieties with coefficients in k. More classically, they may
be defined intrinsically as parity sheaves; B(C) constructible sheaves on F (C)
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satisfying parity vanishing conditions on their stalk cohomology, introduced by
Juteau-Mautner-Williamson [59]. This parity vanishing can be seen as the fact
that the cohomology of our fibre products is supported only in even degrees.
These parity properties naturally split the Hecke category into even and odd
graded parts, which do not interact:

H (G, k) ∼= H (G, k)0 ⊕ H (G, k)1

Definition 2.6.3. The even Hecke category is the even subcategory H (G, k)0
of H (G, k). This is generated by the convolution category of Bott-Samelson
maps by allowing even formal grading shifts only, and can also be given as the
category generated by all sums, summands, and even grading shifts of f∗1Xw(C)
for Bott-Samelson maps f : Xw → F .

This presentation of the Hecke category via Bott-Samelsons is one of many,
some other variants are the following:

Sheaf theoretic: We noted that the convolution isomorphism allows for a
sheaf theoretic description of the Hecke category. This perspective generalises;
any six functor formalism with fundamental classes supplies our three functo-
rial properties in homology, and will have a corresponding version of the Hecke
category. For instance, a treatment of the K-theoretic Hecke category may be
found in Eberhardt [31]. This approach reveals extra structure present, for in-
stance, in the case of sheaves in characteristic zero, the decomposition theorem
shows that the summands are intersection cohomology sheaves. The abelian
machinery of the perverse t-structure is then very useful in understanding the
structure of H (G,Q).

Soergel Bimodules: The equivariant cohomology of these Bott-Samelson
resolutions naturally carries a H∗(B) bimodule structure. Taking tensor prod-
ucts and summands of these bimodules gives the category of Soergel Bimodules,
a distinguished class of graded bimodules over the polynomial ring H∗(B). One
may similarly work non-equivariantly, with (summands of) modules H∗(Xw) as
H∗(G/B) modules, and this gives the category of Soergel Modules. A major
upside of these approaches is that geometry is not required; one may define
everything (bi)module-theoretically from a Coxeter group with suitable reflec-
tion representation. This expands the scope of these constructions to arbitrary
Coxeter groups, and has led to general results, previously only proven for Weyl
groups using sophisticated geometric techniques. A good example of this is the
proof of positivity for the coefficients of Khazdan-Lusztig polynomials by Elias-
Williamson [36].

Diagrammatics: The approach to the Hecke category using bimodules
leads to an alternate diagrammatic description of this category by generators
and relations. This approach is useful for constructing categorical actions of
the Hecke category [35, Ch. 10], and significantly enables computation, see
Williamson [102].
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We would like to show that the Hecke category also has a Chow-motivic de-
scription. Specifically, we will be describing the basic non-equivariant case.
The following lemma, well known to experts, expresses the motivic nature of
the Hecke category.

Proposition 2.6.4. The (Z-integral, non-equivariant) even Hecke category has
a Chow motivic presentation as the additive, graded, idempotent completion of
Chow motivic convolution category of Bott-Samelson maps to F , with mor-
phisms

Hom(Xw, Xu) = CH∗(Xw ×F Xu))

Proof. We have defined our Z-integral, non-equivariant Hecke category with
morphisms that are classes in integral Borel-Moore homology. Our claim there-
fore holds if the realisation map from Chow groups is an isomorphism for fibre
products of Bott-Samelson maps. We may then deduce this from the affine
paving property of Proposition 2.5.5 and the comparison isomorphism result of
Proposition 2.4.3.

2.7 Real geometric extensions

In this section, we will prove our main theorems, combining the motivic descrip-
tion of the Hecke category with our mod two real homology realisation.

First, we will give the real variant of the geometric extension.

Theorem 2.7.1. Let Y be an n-dimensional variety defined over R, with smooth
locus Y sm(R) an n-dimensional nonempty manifold. Then there exists a canon-
ical complex of sheaves on Y (R), the real geometric extension:

E (Y (R),F2)

This object extends the constant sheaf on the smooth locus Y sm(R), and may be
characterised as the minimal summand of f∗1X(R) extending 1Y sm(R) for any
resolution of singularities f : X → Y .

Proof. We will follow the proof of Theorem 1.4.6 from the previous chapter. It
suffices to show the following:

• For a resolution f : X → Y , with induced map f : X(R) → Y (R), there
exists a minimal summand of f∗1X(R) extending 1Y sm(R) on the smooth
locus.

• For any two resolutions f , g of Y , there exists a comparison map

f∗1X1(R) → g∗1X2(R)

which induces an isomorphism on these minimal summands.
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Before proving these, we will recall some facts about the real points of al-
gebraic varieties. These are semi-algebraic sets, in particular locally compact,
Hausdorff and with finite dimensional mod two (co)homology [80]. Furthermore,
any map between real algebraic varieties admits a compatible pair of Whitney
stratifications [49]. These cohomological finiteness properties ensure that the
exceptional right adjoint f ! of f! exists [61, Ch.2] and that we have a six functor
formalism for real algebraic varieties.

In light of this, to show that a minimal such summand of f∗1X1(R) exists,
we need to show that its endomorphism ring is finite dimensional (see [65] for a
discussion of these Krull-Schmidt considerations). This finiteness then follows
by induction using the long exact sequences for open-closed decompositions for
sheaves on Y (R).

To construct a comparison morphism between these pushforwards, we will
use fundamental classes and the convolution isomorphism. Since the induced
map on real points is topologically proper, this convolution isomorphism yields:

Hom(f∗1X1(R), g∗1X2(R))
∼−→ Hom(1, ωX1×Y X2

[−d]) ∼= Hd((X1 ×Y X2)(R),F2)

We may then adapt the proof of Theorem 1.4.6 to this real setting using real
fundamental classes. The closure of the diagonal ∆(Y sm)(R) is a closed subset
of this fibre product (X1 ×Y X2)(R), and has a mod two fundamental class in
homology, as it has a smooth real point. The pushforward of this fundamental
class gives a class in the homology of the fibre product, which translates to a
map between the pushforwards by the convolution isomorphism. By symmetry,
we obtain a corresponding map back, and our compatibility 1.6.5 ensures these
restrict to mutually inverse isomorphisms over the smooth locus. Then Lemma
1.4.2 and Proposition 1.4.5 yields that these maps induce isomorphisms on the
minimal summands extending 1Y sm(R).

Remark 2.7.2. In general, this method of proof requires fundamental classes in
the homology of the closure of the diagonal. Once one leaves the rigid setting
of algebraic geometry, this can easily fail. An explicit counterexample of this is
taking two open disks with their central points glued together. This admits two
maps from smooth manifolds, the first a disjoint union of the disks, as well as
contracting a meridian of a cylinder to a point. We show these resolutions and
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their fibre product below:

From the geometry one may see that the closure of the diagonal is the whole
fibre product, and this does not admit a fundamental class in Borel-Moore
homology, due to the boundary components. We may also verify directly that
the pushforwards of the constant sheaves have different minimal summands
extending the constant sheaf.

Like the geometric extension on complex points, the real geometric extension
inherits the good properties of smooth real algebraic varieties. Our construc-
tion may thus be viewed as a real mod two analogue of intersection homology,
answering a question of Goresky and Macpherson from 1984 [44, Q.7].

Proposition 2.7.3. For Y an irreducible variety of dimension d with a real
smooth point, the real geometric extension E (Y (R),F2) on Y (R) is a d-shifted
self dual complex of sheaves, so its cohomology satisfies Poincare duality:

Hi(E (Y (R),F2)) ∼= Hd−i
c (E (Y (R),F2))∗

If Y admits a small resolution f : X → Y , then the cohomology of E (Y (R),F2)
agrees with the cohomology of this small resolution X(R).

Proof. Let us first prove this shifted self duality statement. Let f : X → Y
be any resolution of singularities of Y . As f is proper, and X(R) is smooth,
the usual sheaf theoretic description of Poincare duality [61, Ch. 3] gives the
following isomorphism, where D denotes Verdier dual:

f∗1X(R)[d] ∼= Df∗1X(R)

Similarly, this d shifted self duality holds for the constant sheaf on Y sm(R),
as it is a (nonempty) smooth manifold of dimension d. As taking duals and
shifts commutes with restriction to an open subset, the minimal summand of
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f∗1X(R) extending 1sm
Y (R) over the smooth locus is d-shifted self dual. This self

duality of E (Y (R),F2) then implies Poincare duality via pushforward along the
terminal map to a point.

For the small resolution claim, we may use the convolution isomorphism
to identify the endomorphisms of f∗1X(R) with the dth homology of the fibre
product X(R) ×Y (R) X(R). Our assumption of smallness of the resolution map
f gives that the complement of the (open) diagonal ∆(Y sm(R)) has dimension
less than d. The open restriction map

Hd(X(R) ×Y (R) X(R),F2) → Hd(∆(Y sm(R)),F2)

is then seen to be an isomorphism by the open-closed long exact sequence in
Borel-Moore homology. This then yields that f∗1X(R) is the minimal summand
extending 1Y sm(R) on the smooth locus, completing the proof.

We will now interpret these real geometric extensions in the context of Schu-
bert varieties and Bott-Samelson resolutions. These real geometric extensions
give a sheaf theoretic interpretation of the idempotents in the convolution cat-
egory associated to real Bott-Samelson maps. In view of this, we have the fol-
lowing description of the mod two Hecke category as real geometric extensions
on the real points.

Theorem 2.7.4. The even mod two Hecke category H0(G,F2) is equivalent
to the additive category of sheaves on F (R) generated by sums, shifts and
summands of sheaves of the form f∗1Xw(R) on F (R) for Bott-Samelson maps
f : Xw → F (R). This category may then be identified with the category gener-
ated by the real geometric extensions on Schubert varieties in F (R).

Proof. We will view the even Hecke category as generated by (even shifts of)
the pushforwards of the F2 constant sheaves along Bott-Samelson maps:

f : Xw(C) → F (C)

In view of Proposition 2.6.4, we may interpret morphisms between these objects
as mod two Chow groups. We may then realise mod two Chow groups as the
morphisms between real pushforwards using the comparison isomorphism of
Lemma 2.4.3 and the convolution isomorphism:

Hom2∗
F(C)(fw∗1Xw(C), fu∗1Xu(C))

∼= CH∗(X1 ×Y X2) ⊗ F2

∼= H∗((X1(R) ×Y (R) X2(R),F2)

= Hom∗
F(R)(fw∗1Xw(R), fu∗1Xu(R))

We may therefore conclude that the idempotent completion of the mod two
pushforwards on real points is equivalent to the even mod two Hecke cate-
gory. We also know that the indecomposable objects in this Hecke category are
indexed (up to grading shift) by w ∈ W , and that each occurs as the dense inde-
composable summand of a Bott-Samelson resolution. Translating this along the
equivalence, we conclude that our category has indecomposable objects precisely
the real geometric extensions, completing the proof.
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Remark 2.7.5. In the preceding proof, we could only deduce that lower sum-
mands of a Bott-Samelson resolutions were real geometric extensions after ver-
ifying the equivalence. In general, the question of whether lower summands of
a resolution are also geometric extensions is an important problem which we do
not have a general answer for.
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Chapter 3

A diagrammatic approach
to six functorial coherences

3.1 Introduction

In this chapter we will address coherence problems that arise from working
within a six functor formalism. The six functor formalism is a powerful, widely
used categorical tool for understanding geometry and topology. It is an intricate
package of categorical data, associated to a suitable category of “spaces”.

We will treat this formalism as a fundamental 2-categorical object of interest,
and relegate geometry to the role of motivation. Taking this perspective, the
often tedious coherence questions that arise become more significant, and must
be addressed.

The issue of compatibilities in the six functor formalism was explicitly raised
by Fausk, Hu, and May in [38], as well as Voevodsky in [27]. Currently there
does not exist a general method for solving these kinds of coherence problems,
though partial progress has been made by Reich [86].

To address these compatibility issues, we introduce a graphical calculus of
string diagrams, adapted to the structure of the six functor formalism. Though
the utility of such diagrams is well known in the theory of 2-categories1, their
remarkable suitability in the six functorial context appears to have been over-
looked.

This diagrammatic approach allows one to draw on topological intuition,
and clarifies the overall structure of such coherences. Through the use of string
diagrams, we may visually identify the key compatibilities present in this cate-
gorical structure.

Using these diagrammatic techniques, we are able to prove a general coher-
ence result, Theorem 3.6.1. This theorem resolves coherences between compo-

1See Street [91, Ch.2] for a 2-categorical treatment, and Baez-Stay [21, Ch.2] for a topo-
logical introduction.
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sitions of functors
f∗, f!, f∗, f !

with natural transformations built from:

• Units and counits of adjunction.

• Comparison maps f! → f∗ and j! → j∗ and their inverses.

• Base changes involving ∗, ! or both ∗ and !, along with their inverses.

• Composition isomorphisms over commutative squares.

This theorem holds in the setting where all commutative squares involved are
pullbacks, which is our condition of admissibility. While this condition excludes
some aspects of the six functor formalism, such as monoidality of f∗ and lax
monoidality of f∗, these maps may still be treated (with more care) in our dia-
grammatic framework, see Example 3.3.25. Dropping this pullback assumption
leads to the construction of natural diagrams such as Example 3.3.10 which do
not commute.

Structure of this chapter

This chapter is centred around Section 3.3, which is our user guide. This guide
provides a gentle introduction to our diagrammatic techniques, summarises our
main results, and provides many worked examples. This section assumes some
familiarity with the six functor formalism, and some 2-categorical experience.

The rest of this chapter may be viewed as supplemental to this user guide.

Section 3.2 serves as a short refresher of the six functorial and 2-categorical
concepts we will need for this chapter. It also supplies our particular definition
of a six functor formalism.

The proofs of this chapter are relegated to Sections 3.4 and 3.5. This comprises
the bulk of this chapter, though the proofs are diagrammatic and combinatorial
in nature. We refer the reader to the technical summary in this introduction to
orient themselves for the proofs.

The remainder of this introduction serves to provide context for and summarise
our main results.

3.1.1 Six functors and coherence problems

The six functor formalism is a powerful categorical framework for analysing the
“cohomology of spaces”, interpreted broadly.

If we consider a domain category C as our category of spaces, the basic
package of data is the following:
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• A category SX for each space X. This may be broadly interpreted as a
“derived category of sheaves” on X.

• For each morphism f : X → Y , four functors2 with adjunctions:

f∗ ⊣ f∗ f! ⊣ f !

SX SY

f∗

f!

f !

f∗

• A tensor product ⊗ and internal Hom functor H om.

From a formal perspective, these functors come equipped with various natu-
ral transformations, which in turn satisfy many compatibilities. The six functor
formalism also comes with extra structure from geometry, such as fundamental
classes and recollement data. We refer the reader to Gallauer [42] for a first
introduction to the six functor formalism, and Scholze [90] for a more advanced
treatment.

This formalism occurs in many different geometric contexts. To convince
the reader of the impact of this formalism, we offer the following sample of
geometric settings, each with a six functor formalism:

1. The context of sheaves on locally compact topological spaces. This basic
example encompasses traditional (co)homology, with or without compact
support. With this formalism in hand, one may trivialise the proof of
Poincare duality on manifolds.[61, Ch.2]

2. The setting of étale sheaves on algebraic varieties over an arbitrary field.
This was the original six functor formalism, developed in in the 20th cen-
tury by Grothendieck and Artin [45] to resolve the Weil conjectures[96].
With this formalism, one may prove the first two Weil conjectures in short
order, and this framework was crucial to Deligne’s resolution of the final
Weil conjecture.[26]

3. The setting of complex algebraic varieties, with mixed Hodge modules.
This six functor formalism, due to Saito [88], endows every part of the
cohomology of complex algebraic varieties with a mixed Hodge structure.
This leads to a theory of Hodge theoretic weights, and provides another
proof3 of the decomposition theorem of B-B-D-G [9].

The six functor formalism occurs in many situations beyond these, we of-
fer the further examples of Voevodsky’s mixed motives [94], the parametrised

2In some examples these functors do not exist for all morphisms.
3The original proof of Beilinson-Bernstein-Deligne-Gabber [9] used weights through the

Frobenius action on ℓ-adic cohomology, and one may easily give a general proof in any six
functor formalism with weights.
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spectra of May-Sigurdsson [75], analytic spaces in unequal characteristic due to
Berkovich [7] and Huber [55], as well as the equicharacteristic analytic case due
to Mann [73].

One may view any six functor formalism as the compression of an enor-
mous amount of homological and geometric information. In any context, the
construction of a six functor formalism should be viewed as a significant mathe-
matical achievement. The advent of ∞-categories has led to more foundational
interest in the six functor formalism, especially towards their construction. The
pioneering work of Liu-Zheng [67] led to the recent ∞-categorical definition of
a six functor formalism due to Mann [73].

While the construction of a six functor formalism may be difficult, a funda-
mental insight of Grothendieck [45] is that one may successfully work solely with
the resulting package of two categorical data. Given the scope of six functorial
techniques in modern geometry, this idea carries even more weight. On a prac-
tical level, the mathematician with an understanding of this abstract formalism
may use it to orient themselves in their exploration of unfamiliar geometric and
cohomological landscapes.

Working within this abstract framework, with its numerous functors and as-
sociated natural transformations, a practical obstacle to reasoning is the basic
question of why diagrams commute. Importantly, one needs to identify when
a diagram commutes for formal six functorial reasons, and when one needs to
examine the “underlying geometry”.

This question of identifying and resolving the formal coherence problems
is implicit in many treatments of the six functor formalism, though has been
explicitly raised by Fausk-Hu-May[38] and Voevodsky [27]. Resolving such co-
herences is usually not a difficult task for one familiar with the six functor
formalism, but is often tedious and in the authors experience, rarely enlighten-
ing. In this chapter, we hope to simplify this problem through diagrammatics,
with the broader aim of reducing the prerequisites needed for reasoning within
the six functor formalism.

3.1.2 Main results

We will now describe the main results of this chapter. Our central thesis is
that there exists a graphical calculus for six functorial coherences, and that
this diagrammatic perspective is useful, allowing one to easily prove coherence
theorems.

Our graphical calculus will describe our functors

f∗, f!, f∗, f !

as coloured, directed strings, and our natural transformations are similarly rep-
resented string theoretically.

We will give an example to see this encoding. From the following pullback

63



square

X ′ X

Y ′ Y

g̃

f̃ f

g

we have the following morphism built from units, counits, the map f̃! → f̃∗ and
base change maps:

f̃∗f̃! → f̃∗f̃!g̃
!g̃! → f̃∗f̃∗g̃

!g̃! → f̃∗g!f∗g̃! → g̃!f∗f∗g̃! → g̃!g̃!

One would represent this morphism diagrammatically as:

f̃∗ f̃!

g̃! g̃!

We will be dealing with natural transformations like this one, built from the
following pieces:

• Our functors will be compositions of f∗, f!, f
∗, f !.

• Our generating natural transformations will be

– Units and counits of adjunction.

– Our two maps f! → f∗ and j! → j∗ between ! and ∗, and their
inverses.

– Composition isomorphisms over commutative squares.

– Base change maps involving f∗ and f∗, f! and f !, as well as the base
change maps which use the ! and ∗ functors together.

– Formal inverses and adjoints of these base change maps.

Each of these generating natural transformations will be interpreted string
theoretically, and compositions of these will model our more complicated coher-
ence problems.

To analyse coherence problems in this setting, we must take pullback con-
siderations into account on a basic level. Our example 3.3.10 shows that the
commutativity of a diagram may depend entirely on whether a commutative
square in its definition is a pullback. We address this by restricting our atten-
tion to coherence problems built entirely from pullback squares, which we call
admissible, see Definition 3.4.2. While this does restrict our general coherence
statements, the graphical calculus of string diagrams may still be used without
this restriction, see Example 3.3.25.
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Within this admissible context, our first result is the verification of a large
amount of simple coherences. We call these our fundamental local moves, to be
found in Proposition 3.4.8 and Theorem 3.4.31. These encompass the primitive
compatibilities that one encounters in a six functor formalism.

Two examples of coherences entailed by the theorem are given below, along
with their corresponding diagrammatic moves:

f∗g!f∗ g!f
∗f∗ h!f∗g

∗ f∗h
!g∗ f∗g

∗h!

f∗f∗g! g! h!g∗f∗ g∗h!f∗ g∗f∗h
!

= =

These fundamental local moves are a useful organising tool for understanding
the problem of coherences in general. From a practical perspective, our proofs
also illustrate the large amount of redundancy between these relations.

These local moves allow us to prove our general coherence result, Theorem
3.6.1.

Theorem 3.1.1. Consider an admissible coherence problem in a six functor
formalism. If the two matchings induced by the associated string diagrams are
equal, then the two natural transformations are equal, and the diagram com-
mutes.

An interpretation of this theorem is that any diagram that fails to com-
mute does so for obvious reasons; this easily checkable matching condition is
sufficient to prove commutativity. In the special case of the pullback n-cube,
our diagrammatics also enable the stronger Theorem 3.6.2, with the following
simple corollary:

Corollary 3.1.2. Consider two natural transformations α, β built from func-
tors drawn from a pullback n-cube, such that α and β are compositions of base
change, composition isomorphisms, ! − ∗ morphisms, and their inverses. Then
we have

α = β

3.1.3 Structure of the proofs

We will outline the strategy and high level structure of the proofs of this chapter.
First, we will be adopting an axiomatisation of the six functor formalism which
is adapted to proving our coherences. This comprises of the following data
(Definition 3.2.1):

• A category SX for each X in C .
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• Two functors for each morphism X
f−→ Y given as f!, f∗ from SX to SY .

• A natural transformation f! → f∗.

The axioms that this data must satisfy allow us to construct f∗, f ! and the
maps j! → j∗ for open immersions. The obvious symmetry present allows the
use of a formal Verdier duality to cut down our proofs.

Most of the proofs in this chapter are given in Section 3.4. The first part
of this section is devoted to constructing the maps in the six functor formalism
that we allow in our coherence problems. In this section we verify the various
compatibilities alongside the constructions, and the end result is the list of
primitive coherences, our fundamental local moves of Section 3.4.

Once we have these local moves, we work towards proving the main co-
herence theorem, which has quite a different flavour. To prove the theorem,
we analyse the uncoloured Brauer diagrams underlying the coloured, directed
string diagrams that encode our coherence problems (Section 3.5). We show
that these Brauer diagrams may be put into a topological normal form by our
local moves, regardless of how they are coloured and oriented. This section is
an excursion into diagrammatic algebra, and may be viewed as independent to
the surrounding category theory.

With this normal form, the proof of our Theorem 3.6.1 is straightforward.
Given any two natural transformations with the same induced matching of their
string diagrams, we ignore the colour and direction, and simplify our string
diagrams down to the same normal form. An analysis of the potential coloured
orientations of the string diagrams then allows us to show that the morphisms
are equal. To prove this main coherence theorem, we do not use any properties
of our particular six functorial axiomatisation. In the proof, we only use the
fundamental local moves along with the existence of a suitable normal form for
Brauer diagrams.
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3.2 Technical background

In this section we will give the definitions needed in this chapter, as well as recall
the necessary categorical background. Our axiomatisation of a six functor for-
malism, given in Definition 3.2.1, is the main definition of this section. Beyond
this, we will recall the standard material of encoding natural transformations
as string diagrams and specify what we mean by a coherence problem. For the
2-categorically minded reader comfortable with what a six functor formalism
entails, this section may be safely skipped.

3.2.1 A definition of a six functor formalism

A six functor formalism is a package of data assigned to every suitable space X,
consisting of a category SX and functors f∗, f!, f

∗, f ! for a morphism f : X → Y .
Making this idea precise depends on the exact context, and for the purposes of
this chapter, it is helpful to adopt a reasonably flexible view of what a six func-
tor formalism is. Recently, Mann [72] has given a streamlined ∞-categorical
definition of a six functor formalism, following foundational developments of
Liu-Zheng [67]. In our view, this is the correct axiomatisation of a six functor
formalism in full generality. We have chosen to use a simplified two categorical
version of a six functor formalism in this chapter however. The reason for this
choice is to keep the proofs of the coherences simple, transparent and self con-
tained. In our axiomatisation, we start with the minimal data of f! and f∗ and
a natural transformation between them. We then build the other constructions
from this starting data.

Our axiomatisation of a six functor formalism is as follows.

Definition 3.2.1. A six functor formalism S := (S∗, S!) on a category C
is the data of a pair of pseudofunctors S∗, S! from C to the 2-category Cat,
and a lax natural transformation of pseudofunctors c : S! → S∗, along with two
composition closed classes of morphisms in C : the open immersions and the
proper maps.

These two functors S∗ and S! are required to strictly agree on objects, and
the object components of c are the identity functor. For any object X and
morphism f in C we define

SX := S∗(X) = S!(X)

f∗ := S∗(f)

f! := S!(f)

as well as cf : f! → f∗ for the component of c at a morphism f in C . We require
the following:

(SF1) For all morphisms f , f∗ admits a left adjoint f∗, and f! admits a right
adjoint f !.

67



(SF2) For all proper morphisms p, the map cp : p! → p∗ is an isomorphism, and
for all open immersions j, each of the maps

j∗j∗
ϵ−→ Id Id

η−→ j!j! j∗j!j
! j∗ϵ−−→ j∗

j!j!
j!cj−−→j!j∗ j∗j!

j∗cj−−−→ j∗j∗ j!
j!η−−→ j!j∗j

∗

are isomorphisms.

(SF3) For any morphism f in C , there exists a factorisation f = p ◦ j where j is
an open immersion, and p is proper.

For the remaining two conditions, we fix a pullback square in C :

X ′ X

Y ′ Y

f̃

g̃

f

g

(PS)

Our final conditions are the following:

(SF4) In (PS), if f is an open immersion (resp. proper), then f̃ is also an open
immersion (resp. proper).

(SF5) In (PS), the induced base change morphisms

g∗f∗ → f̃∗g̃
∗

f̃!g̃
! → g!f!

are both isomorphisms if f is proper, or if g is an open immersion (see Example
3.2.10 for the definition of these base change morphisms).

Remark 3.2.2. Our definition here is similar but distinct from the base change
formalism of Chapter 1. While both are simple axiomatisation of the six functor
formalism, the previous definition was adapted to the geometry, and this one
is more axiomatic, designed to prove coherences. Both should be viewed as
utilitarian definitions designed for their respective tasks at hand.

This concludes our description of the elementary data of our six functor
formalism. This small amount of input data enables simple constructions of
the rest of the data associated to a six functor formalism. This in turn enables
proofs of categorical coherences which remain only a few steps removed from
the definitions.

3.2.2 Constructions in a six functor formalism

In this section we will outline how the standard parts of the six functor formalism
are built from our simple initial data. We will also summarise the explicit list of
natural transformations that we will allow in our coherence problems, see 3.5.

Our first construction is that of f∗ and f !, using the standard fact [93, 54]
that the pointwise adjoints of pseudofunctors naturally carry the coherence data
to become pseudofunctors.
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Proposition 3.2.3. The pointwise adjoints f∗ and f ! inherit the structure of
pseudofunctors from the coherence data defining f∗ and f!. For example, the
isomorphism

(f ◦ g)∗ ∼= g∗ ◦ f∗

is given as the composite:

(f ◦ g)∗ → (f ◦ g)∗f∗g∗g
∗f∗ → (f ◦ g)∗(f ◦ g)∗g

∗f∗ → g∗f∗ = g∗ ◦ f∗

We refer the reader to Example 3.2.11 to see this construction topologically
using string diagrams.

We will refer to the functors f∗, f!, f
∗, f∗, their units and counits, as well as

the morphism f! → f∗ as the elementary pieces of our six functor formalism. We
will use these elementary pieces as building blocks to construct further natural
transformations between compositions of these functors.

The first of these constructions is a canonical isomorphism j∗ → j! for an
open immersion j, with proof to be found in Section 3.4.4.

Proposition 3.2.4. Our axioms give a natural isomorphism of pseudofunctors

j∗
τj−→ j!

for open immersions j. It is characterised by the commutativity of the following
diagram:

j!j
! Id

j∗j
∗

ϵ

cjτ−1
j

η

This natural isomorphism lets us construct the most conceptually important
part of the six functor formalism, the !−∗ base change map for pullback squares.
In what follows, let

X ′ X

Y ′ Y

f̃

g̃

f

g

be a pullback square in C .

Definition 3.2.5. The ∗−! base change map is a canonical natural isomor-
phism:

g∗f! → f̃!g̃
∗ (3.1)

It is defined by first choosing a proper/open factorisation of g into g = p ◦ j,
and taking the composition

g∗f! → j∗p∗f! → j∗f!p
∗ → f!j

∗p∗ → f!g
∗

where the map p∗f! → f!p∗ for proper p is given by

p∗f! → p∗f!p∗p
∗ → p∗f!p!p

∗ → p∗p!f!p
∗ → p∗p∗f!p

∗ → f!p
∗
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and the map j∗f! → f!j
∗ for j an open immersion is given by

j∗f! → j!f! → f!j
! → f!j

∗

Defined similarly, we have canonical isomorphisms

g!f∗ →f∗g
! (3.2)

f∗g
! →g!f∗ (3.3)

f̃!g̃
∗ →g∗f! (3.4)

where the maps (3.2) and (3.3) are inverses, as are maps (3.1) and (3.4).

Remark 3.2.6. In a sheaf theoretic context, one may easily describe this first
map by hand, see [1, Lemma 1.2.11]. In explicit examples, our choice to work
axiomatically may not be the most efficient way to prove the fundamental local
moves of Section 3.4.8 and Theorem 3.4.31.

The independence of these constructions under all choices involved is a re-
markable consequence of the axioms. The proof is classical, and we repeat it in
diagrammatic language as Proposition 3.4.20. Our last maps are the mates4 of
these ! − ∗ base change maps:

Definition 3.2.7. For a pullback square, we define the two additional ∗−! maps

f!g̃∗ → g∗f̃!

f̃ !g∗ → g̃∗f !

as the mates of the ∗−! base change map of Definition 3.2.5.

The first of these maps is an isomorphism when f or g is proper, and the
second when f or g is an open immersion, but these are not isomorphisms in
general.

Remark 3.2.8. Compared to other descriptions such as [90], we have assumed all
of our maps are separated, and we have not incorporated the external product
⊠ into our definition. We have taken this approach for its simplicity, as these
additional complications may be handled by our diagrammatics.

For future reference, let us summarise the list of natural transformations we
will be working with in our coherence problems. We will refer to the following
pullback square, with j an open immersion:

X ′ X

Y ′ Y

f̃

g̃

f

g

(3.5)

4We will use this standard Australian terminology for the maps induced by adjunction,
which will be clear from context when left unspecified.
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We have units and co-units, for ! and ∗:

f∗f∗ → Id Id → f∗f
∗ f!f

! → Id Id → f !f!

Morphisms between ! and ∗, and their formal inverses:

f! → f∗ f∗ → f! j! → j∗ j∗ → j!

Composition isomorphisms, their mates the base change morphisms and the
formal inverses of these base changes when they exist:

f̃∗g∗ → g̃∗f∗ g∗f̃∗ → f∗g̃∗ f̃ !g! → g̃!f ! g!f̃! → f!g̃!

g∗f∗ → f̃∗g̃
∗ f̃!g̃

! → g!f! f̃∗g̃
∗ → g∗f∗ g!f! → f̃!g̃

!

Finally, the ! − ∗ base change maps, their mates, and the associated formal
inverses:

g∗f! → f̃!g̃
∗ f̃!g̃

∗ → g∗f! g!f∗ → f̃∗g̃
! f̃∗g̃

! → g!f∗

f!g̃∗ → g∗f̃! g̃∗f ! → f̃ !g∗ g∗f̃! → f!g̃∗ f̃ !g∗ → g̃∗f !

For verifying compatibilities, we will repeated use the factorisation of maps into
proper and open immersions (Axiom SF3), for which we have the following
definition.

Definition 3.2.9. A factorised pullback square is a compatible pair of factori-
sations such that both squares are pullbacks:

j′

f ′

g′

p′

f ′′ f
j

g

p

We will not be incorporating composition isomorphisms such as

(f ◦ g)∗ ∼= f∗ ◦ g∗

into our general diagrammatic framework however. While these may be depicted
in our diagrammatics, and we will use these factorisations in our proofs (e.g.,
Proposition 3.4.19), for our general statements we will only allow coherences
built from the maps listed above. We leave the task of incorporating these
composition isomorphisms into the picture as a subject of future work.
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3.2.3 String diagrams

We will be using string diagrams to encode natural transformations between
functors, and in this section we will introduce this graphical calculus. This will
be a short introduction illustrating the key points; for a more comprehensive
treatment, we refer the reader to Street [?] and Baez-Stay [21]. We will be using
these string diagrams as a visual description of the natural transformations and
coherences.

The starting point is to depict functors F , G as strings, and a natural trans-
formation τ : F ⇒ G as a break between the strings (here depicted by a circle):

τ

G

F

We may represent morphisms between composites of functors as boxes with
multiple inputs and outputs. Vertical composition is then given by stacking,
and horizontal composition is given by horizontal concatenation of diagrams.

The upshot of this description is that it makes naturality a topological prop-
erty. For example, given two horizontally composable natural transformations

τ : F ⇒ G and τ ′ : F ′ ⇒ G′

we may compose these to get a natural transformation

τ ◦ τ ′ : F ◦ F ′ ⇒ G ◦G′

This may be interpreted as

(τ ◦ τ ′)X = τG′(X) ◦ F (τ ′X)

or as
(τ ◦ τ ′)X = G(τ ′X) ◦ τF ′(X)

Naturality is the statement that these two constructions agree; the following
diagram commutes:

F ◦ F ′ F ◦G′

G ◦ F ′ G ◦G′

τF ′

Fτ ′

τG′

Gτ ′

72



Diagrammatically, this is the following:

τ

G ◦G′

F ◦ F ′

τ ′ τ

G ◦G′

F ◦ F ′

τ ′

τ ◦ τ ′

G ◦G′

F ◦ F ′

==

In the above diagram, naturality is the statement that line breaks (natural
transformations) which do not interact can be slid past one another.

This diagrammatic language is very helpful for dealing with adjoint functors.
If we have an adjunction f∗ to f∗, then we can adorn our strings with direction,
and depict the units and co-units as oriented caps and cups instead of boxes:

Id → f∗f
∗ f∗f∗ → Id

In this language, the triangle identities of adjunction become “straightening” of
the strands:

= =

f∗

f∗ f∗

f∗ f∗ f∗

f∗ f∗

f∗ f∗f∗f
∗ f∗ f∗f

∗f∗

f∗ f∗

Let us interpret the ∗ base change morphism in this language.

Example 3.2.10. For a commutative square

W X

Z Y

g̃

f̃ f

g

we define the base change map

g∗f∗ → f̃∗g̃
∗

as the composition

g∗f∗ → g∗f∗g̃∗g̃
∗ → g∗g∗f̃∗g̃

∗ → f̃∗g̃
∗
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Depicting this composition isomorphism

f∗g̃∗ → g∗f̃∗

as a crossing

lets us diagrammatically describe the base change as a rotated crossing:

g∗f∗ → f̃∗g̃
∗

:=

This example shows how the definitions lend themselves to string diagram-
matic interpretation. The following example shows how this diagrammatic ap-
proach may simplify proofs.

Example 3.2.11. We may interpret the construction of the adjoint pseudo-
functor of Proposition 3.2.3 diagrammatically:

:=

f∗ g∗

(g ◦ f)∗

(g ◦ f)∗

f∗ g∗

The key coherence property that these isomorphisms must satisfy is the cocycle
condition; for composable morphisms, the following diagram commutes:

f∗g∗h∗ (g ◦ f)∗h∗

f∗(h ◦ g)∗ (h ◦ g ◦ f)∗

Our diagrammatic perspective enables a simple proof of this compatibility for
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our adjoint functor f∗:

:= = =

= = =

We leave the analogous results for the identity isomorphism to the reader.

One may also translate back from this diagrammatics to ordinary commuta-
tive diagrams. Under this translation, each local diagrammatic move becomes a
region in the diagram. We invite the reader to write out the commutative dia-
gram corresponding to the previous proof to see the utility of this diagrammatic
language.

In this example, we omitted many labels for visual simplicity. We will be
using this visual shorthand throughout, as ignoring the labels streamlines the
presentation significantly. In general, we will include labels on our string dia-
grams when necessary to avoid ambiguity, or when they significantly aid com-
prehension. We will also drop labels of morphisms when they are unambiguous
from context.

3.2.4 Coherence problems

We will now define what a coherence problem entails. In maximal generality, a
coherence problem is the question of whether two natural transformations are
equal.
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Definition 3.2.12. A coherence problem is a pair of natural transformations
between two functors F → G. We say that the coherence holds if the composite
natural transformations are equal.

This definition is very general; in our context, these coherence problems arise
as follows:

• Our F and G are compositions of f∗, f!, f
∗, f !.

• Our natural transformations are generated by the list of ∗, under compo-
sition with our functors.

In this way, a coherence problem is a question of whether two presentations
give the same map. To relate our different presentations, we will use relations,
which are compatibilities between our natural transformations. We have a finite
list of these basic compatibilities, and we may compose them to resolve larger
coherences. From a diagrammatic perspective, our relations are local moves
that we may apply to small regions of our larger diagrams.
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3.3 User guide

In this section we will provide a user guide to our diagrammatic formalism, and
summarise our general results. Our goal is to enable the easy resolution of six
functorial coherence problems, in a way that is simple yet robust enough to
generalise beyond our setting. We stress that this is for working within a given
six functor formalism, and we do not address the various (often non-formal)
questions involved in constructing such a six functor formalism. This section
will be focused on examples and how to use these tools, deferring proofs until
later.

Our essential idea is to use string diagrams to depict natural transformations,
and to write base change and composition isomorphisms as crossings of strings.
When all commutative squares involved are pullbacks (that of an admissible
coherence problem, Definition 3.4.2), we may manipulate our diagrams to give
a general coherence theorem, Theorem 3.3.13. When we drop this admissibility
assumption, the diagrammatic approach is still applicable, but one must be more
careful, as some naturally constructed diagrams do not commute, see Example
3.3.10.

This user guide is aimed towards the geometrically minded reader, who
may be unfamiliar with diagrammatic methods in 2-category theory. We will
assume familiarity with the basics of the six functor formalism however, we
refer the reader to Definition 3.2.1 for a refresher of the formalism. We invite
readers familiar with such concepts (or those just want to prove their diagrams
commute) to skip to our summary of encoding rules ∗, our fundamental local
moves of Propositions 3.3.18 and 3.3.20 and the worked Examples 3.3.22, 3.3.23,
and 3.3.25.

3.3.1 Coherence problems as string diagrams

We will begin by describing our encoding of coherence problems into string
diagrams. First, we need to encode our basic pieces of the formalism, the
functors:

f∗, f!, f∗, f !

We will identify these with their identity natural transformations, and view
these as strings with colour and direction.

Definition 3.3.1. We encode our the identity natural transformation on our
functors as a coloured, directed, string diagram:

f∗ f∗ f! f !

f∗ f∗ f! f !

The colour indicates ∗ or !, and the direction indicates whether we are pushing
forward or pulling back.
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These directed strings enable the usage of cups and caps for (co)units of
adjunction.

Definition 3.3.2. We encode the units and counits of adjunction:

f∗f∗ → Id Id → f∗f
∗

f!f
! → Id Id → f !f!

as cups and caps connecting our strings:

f∗ f∗

f∗ f∗

f !f!Id

Id Id

Id

f ! f!

Before our diagrams get more involved, let us note that we will always read
diagrams upwards, regardless of the direction of the coloured strings. We will
also fix a reference diagram for the upcoming examples:

f̂

ĝ

ĵ

g′
j′

g̃

f ′

g

j̃

f̃

j

f

In this cube, we will assume all squares are pullbacks, f and g are proper, and
j is an open immersion (and by base change the same holds for decorated f ,
g and j). When no confusion will arise, we will drop the decorations over the
letters.

The following example encodes a natural transformation built from the pieces
we have seen so far:

Example 3.3.3. The composition

f∗f∗j
!g∗g∗ −→ f∗f∗j

! −→ j! −→ j!j!j
! −→ j!

is given by the following string diagram:

f∗ f∗ j! g∗ g∗

j!

We will now incorporate the natural maps that go between ∗ and !.
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Definition 3.3.4. We encode the natural transformations j! → j∗ and g! → g∗
as colour changes in these strings. When these maps are invertible, we encode
the inverse of this natural isomorphism by the corresponding colour change.

j! f!

j∗ f∗

f∗

f!j!

j∗

Example 3.3.5. The composition

f∗f!g
∗g∗j

! → f∗f∗g
∗g∗j

! → g∗g∗j
! → g∗g∗j

∗ → j∗

is given by the following string diagram:

f∗ f! g∗ g∗ j!

j∗

Finally, we encode our base change and composition isomorphisms as cross-
ings of strings.

Definition 3.3.6. For a commutative square, the following diagrams encode
base change, composition isomorphisms, and their mates:

f !

f !

g∗

g∗

f! g∗

f!g∗

f∗ g!

f∗g!

f∗ g!

g! f∗

g∗f∗

g∗ f∗ f∗ g∗

f∗g∗f∗ g∗

f∗g∗

f! g!

f!g! g! f !

f ! g!

f ! g!

g! f !

f! g∗

f!g∗

g! f∗

f∗ g!

We next give an example using all of these kinds of natural transformations.
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Example 3.3.7. We may encode the following sequence of natural transforma-
tions

f∗f!j
∗ → f∗j∗f! → f∗j!f! → j!f∗f! → j!f∗f∗ → j!

as the following string diagram:

f∗ f! j∗

j!

In situations where the ambient square is a pullback, and one of the maps is
proper or an open immersion, our axioms for a six functor formalism yield formal
inverses to some of these maps. We depict these as the following crossings:

f∗

f∗ g!

f∗g!

f ! g!

f !g!

f ! g∗

f !g∗

g∗

f∗g∗

This completes our encoding rules; these are the natural transfromations we
will treat in our general formalism. While there are other natural transforma-
tions that occur in this framework, such as

(f ◦ g)∗ → f∗g∗

we will treat these on an ad hoc basis, and leave the task of incorporating
everything to a future treatment.

Warning 3.3.8. Importantly in our framework, the existence of a diagram en-
tails properties of our underlying maps. For example, a multicoloured crossing
implies that the underlying commutative square is a pullback, and the diagram-
matic

f∗ g∗

f∗g∗

entails that either the f ’s are proper, or that g’s are open immersions, as this
map is the formal inverse of the base change. In simple situations, this issue
may be ignored, but it is unavoidable for our general global coherence results.
A further discussion of these kinds of issues may be found in Example 3.4.4.
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We will now summarise the natural transformations that can occur in our
coherence problems, along with their diagrammatic descriptions. We will refer
to the following pullback square, with j an open immersion:

X ′ X

Y ′ Y

f̃

g̃

f

g

(∗)

To be unambiguous, we have included all of our decorations on the maps for
string diagrams that involve crossings. We also remind the reader that all string
diagrams are read upwards.

First, we have the strand identity maps and their units and co-units of
adjunction, for both ! and ∗:

f∗f∗ → Id Id → f∗f
∗ f!f

! → Id Id → f !f!

f∗ = f∗ f∗ = f∗ f! = f! f ! = f !

We then have the morphisms between ! and ∗, and their formal inverses:

f! → f∗ f∗ → f! j! → j∗ j∗ → j!

Next, we have the composition isomorphisms, their mates the base change mor-
phisms, and when they exist, the formal inverses of these base changes:

f̃∗g∗ → g̃∗f∗ g∗f̃∗ → f∗g̃∗ f̃ !g! → g̃!f ! g!f̃! → f!g̃!

g∗f∗ → f̃∗g̃
∗ f̃!g̃

! → g!f! f̃∗g̃
∗ → g∗f∗ g!f! → f̃!g̃

!

Finally, we have the ! − ∗ base change maps, their mates, and when they exist,
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their formal inverses:

g∗f! → f̃!g̃
∗ f̃!g̃

∗ → g∗f! g!f∗ → f̃∗g̃
! f̃∗g̃

! → g!f∗

f!g̃∗ → g∗f̃! g̃∗f ! → f̃ !g∗ g∗f̃! → f!g̃∗ f̃ !g∗ → g̃∗f !

Remark 3.3.9. To help orient oneself in this sea of diagrams, one should keep in
mind that blue arrows want to point right, red arrows want to point left. This
indicates the direction of (co)units, and also gives the natural direction of the
standard (monocoloured) base change map.

3.3.2 Conditions and counterexamples

Before we can use these techniques to resolve our coherence problems, we must
first understand some conditions of their use. To describe these precisely, we
will work with an ambient diagram D in our domain category C , and draw our
functors f∗, f!, f

∗ and f ! from the pool of morphisms present in the diagram
D. In general, to ensure our diagrammatics are well behaved, we will need to
impose some conditions on this setup.

These admissibility conditions are always satisfied in the context of a full
pullback n-cube, such as our reference 3.3.1. The reader whose diagrams arise
in this cubical context may safely skip this section.

We will motivate these conditions through the following example, which
shows that a square being a pullback can be the determining factor of whether
a diagram commutes.

Example 3.3.10. Consider a commutative square in C , where g, g̃ are open
immersions, and f , f̃ are proper:

W X

Z Y

g̃

f̃ f

g

(3.6)

We have the following coherence problem, where the maps are base changes and
! → ∗ morphisms:

g∗f∗ f̃∗g̃
∗ f̃!g̃

∗ f̃!g̃
!

g!f∗ g!f!
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Diagrammatically, this is:

vs

g! f! g! f!

g∗ f∗ g∗ f∗

If the commutative square (3.6) is a pullback, these morphisms are equal,
but not necessarily otherwise.

Proof. We will first prove that these maps may differ in a non-pullback square,
using an explicit counterexample. Let f be the map from the two point space
T to a one point space ∗, and consider the induced square of diagonals:

T T × T

∗ ∗

∆

f f×f

Interpreting this coherence problem within the constructible derived category
of k vector spaces we may evaluate on the constant sheaf 1T×T of T × T . This
gives the following diagram:

f∗1T ⊗ f∗1T f∗1T f!1T f∗1T

f∗1T ⊗ f∗1T f!1T ⊗ f!1T

≃

≃ ≃

≃

We may explicitly recognise the pushforward f∗1T as a two dimensional vector
space, so this diagram cannot commute, as an isomorphism of four dimensional
spaces cannot factor through a two dimensional space.

When this square is a pullback, we are in the admissible setting, so Theorem
3.3.13 implies the commutativity of this diagram immediately.

Remark 3.3.11. We claim this is not an artificially constructed example. One
may give a more organic presentation of this noncommuting diagram as the fol-
lowing, letting ∨ denote the Verdier dual, using the isomorphism ∆! ∼= Hom( ∨, )5:

f∗(F ⊗ G ) f! Hom(F∨,G )

f∗F ⊗ f∗G Hom(f!(F∨), f!G )

5One should interpret this in any six functor formalism with this extra structure, e.g., the
constructible sheaf theoretic context
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This example shows that pullback information must be incorporated into
coherence problems; the commutativity of a diagram may depend on whether a
commutative square is a pullback.

This problem is significant as base change isomorphisms along non-pullback
squares are relevant in the geometric context. For example, the lax monoidality
of f∗ is precisely given by such a base change.

Our solution to this problem is to restrict our general framework to situations
where all the relevant squares are pullbacks. Precisely, this is requiring that our
coherence problem is admissible in the sense of Definition 3.4.2. In essence,
this condition is that the diagram D is equipped with distinguished pullback
squares, and that we only use base change and composition isomorphisms over
these pullback squares.

The motivating example of an admissible diagram is given by taking n maps,

fi : Xi → Y

each potentially proper and/or an open immersion, and considering the pullback
n-cube they generate. For this diagram D, any coherence problem built out of
the list of maps in ∗ will be admissible.

For diagrams which are not admissible, one may still encode natural transfor-
mations using our diagrammatics, but with more care needed. One must work
with the local moves, and check at each stage that the moves are well defined.
In Example 3.3.25, we work through such a problem involving monoidality and
the projection formula.

3.3.3 Theorems

We will now describe our main results. We will work within this admissible
context of coherence problems, and indicate when this condition may be relaxed.
To state our main coherence theorem, we will need some string diagrammatic
terminology.

Definition 3.3.12. The matching induced by a coloured string diagram is
the pairing of domain and codomain strands given by identifying endpoints of
strands.

For instance, for the natural transformation

f∗f!j
∗ → f∗j∗f! → f∗j!f! → j!f∗f! → j!f∗f∗ → j!

the associated coloured string diagram is

f∗ f! j∗

j!
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with associated matching:

We define a bubble to be a closed loop within a larger string diagram.

With this language, we may state our main coherence theorem.

Theorem 3.3.13. Consider an admissible coherence problem in a six functor
formalism, with no bubbles in the associated string diagrams. If the two match-
ings induced by the associated string diagrams are equal, then the two natural
transformations are equal, and the associated diagram commutes.

This theorem implies all of the smaller coherences used in its proof, and is
the main result of this chapter.

One may interpret this theorem as stating that in a pullback (admissible)
context, any diagram that fails to commute will do so for obvious reasons.
We note that some type of matching condition will be required in any such
coherence theorem. This is to encompass tautological noncommuting diagrams
arising from a single adjunction, such as the classic example:

̸=

f∗f∗f
∗ → f∗f∗f

∗

The converse of this theorem does not hold, there are (uniformly) equal natural
transformations with different induced matchings. For example, for j an open
immersion, the following diagram commutes, where the maps are unit-counit
and the proper/open immersion morphisms respectively:

j!j
! Id

j!j
∗ j∗j

∗

This translates to the universal equality of the following string diagrams:

=

j!j
! → j∗j

∗

Remark 3.3.14. We suspect this equality for open immersions may be the only
source of diagrammatic ambiguity, but we do not attempt to make this precise.
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Remark 3.3.15. The assumption of no bubbles is a restriction for simplicity, a
similar result could be shown with bubbles, at the cost of including more labels
beyond the data of the matching. We leave such general statements to the
reader.

For our motivating admissible diagram of the pullback n-cube, we may say
more. In this case, we have conditions to ensure that there is only one map
between two compositions of functors.

Theorem 3.3.16. In a pullback n-cube, between any two compositions of func-
tors, there is at most one admissible natural transformation inducing a permu-
tation as its associated matching.

In particular, if we restrict to natural transformations which always induce
a permutation matching (in particular, those without units or co-units), then
any such coherence problem will be admissible. This gives the following “all
diagrams commute” type of result.

Corollary 3.3.17. Consider two natural transformations α, β built from func-
tors drawn from a pullback n-cube, such that α and β are compositions of base
change, composition isomorphisms, ! − ∗ morphisms, and their inverses. Then
we have

α = β

The proofs of these theorems follow from a large number of local compati-
bilities, which we interpret as diagrammatic moves. These local moves are valid
in any admissible coherence problem, and come in two main classes. The first
concerns the interaction of ! to ∗ morphisms and those maps with associated
diagram a crossing.

Proposition 3.3.18 (Fundamental local moves I). We may slide colour changes
across crossings when both sides are well defined. For instance, the following
are equal, when both sides may be interpreted within an admissible diagram:

= =

= =

j!f∗ → f∗j
∗

j∗f! → f!j
!

f∗g∗ → g∗f!

f∗g
! → g!f!

For the complete list of all such moves, see Propositions 3.4.27 and 3.4.28.

Remark 3.3.19. Note that pullbacks are required for these local moves to be
interpreted, as they involve ! − ∗ base changes.
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The second class of local moves are compatibilities which do not involve the
! to ∗ maps, diagrammatically they are given by string diagrams with no colour
changes. To succinctly describe our second class of local compatibilities, we will
consider the underlying uncoloured, undirected string diagrams. A coloured
orientation of such a diagram is a given choice of colour and direction.

Proposition 3.3.20 (Fundamental local moves II). In an admissible coher-
ence problem, for any coloured orientation of the following monocoloured string
diagrams, we have the following local moves.

=⇒ =⇒

⇔

=⇒

⇔

⇔

Remark 3.3.21. The local moves described by this Proposition are formally
better behaved than our previous class. They do not require any extra type
checks (in the sense of Example 3.4.4) before they may be applied to a diagram,
and may be valid outside the admissible context.

As an example, this proposition entails the commutativity of the following
diagrams:

= =

f∗g!f∗ g!f
∗f∗ h!f∗g

∗ f∗h
!g∗ f∗g

∗h!

f∗f∗g! g! h!g∗f∗ g∗h!f∗ g∗f∗h
!

We next give an example with multiple steps.

Example 3.3.22. Consider the following coherence problem, labelled with re-
spect to our (admissible) reference cube:

f∗f∗g! f∗g!f∗

g! g!f
∗f∗
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Translating to string diagrams, we obtain the following:

vs

Observe that this may be dispatched at once by Theorem 3.3.13, thought let us
solve this independently. We may apply our local moves to obtain the following
proof:

= = =

Interpreting this as natural transformations then yields the following description
of this commutativity:

f∗f∗g! f∗g!f∗ g!f
∗f∗

f∗f∗g! g!

Using these two classes of fundamental local moves, we may generate all of
our other coherences. In a more general context (for instance, if one wanted to
use their own axiomatisation of a six functor formalism), these are the coher-
ences one needs for our main Theorem 3.3.13.

3.3.4 Harder examples

We conclude this user guide with some harder examples. The first is a more
complicated coherence that arises in geometry, which still nicely sits within the
framework of admissible diagrams. The second example is of a monoidal nature,
outside this admissible context. In this situation, our diagrammatics still leads
to a solution, though we must be more careful to check that our local moves are
valid.

Example 3.3.23 (The convolution isomorphism). We will consider a more
complicated example, which arises in nature. For this, we will use the following
pullback cube, where f , g are proper, and j is an open immersion. Since we
are working within a pullback cube, all the coherence problems built out of our
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pieces will be admissible, so we will ignore this technicality.

XU ×U X ′
U X ′

U

X ×Y X ′ X ′

XU U

X Y

g̃U

f̃U

ĵ
gU

j′

g̃

f̃

g
fU

j

j

f

Given the front face of the pullback cube, the convolution isomorphism is the
isomorphism

Hom(f! , g∗ )
τ−→ Hom(g∗ , f ! )

given as the following composition:

Hom(f! , g∗ ) → Hom( , f !g∗ ) → Hom( , g∗f
! ) → Hom(g∗ , f ! )

Using the circle to denote an arbitrary morphism f! → g∗, its image under τ is
given by the following string diagram:

g∗

f !

Remark 3.3.24. This convolution isomorphism arises naturally in a geometric
context as follows. Let the sources of f and g be smooth varieties X1 and X2

of dimension d, and evaluate this isomorphism on the constant sheaf in both
arguments. Smoothness of X2 gives an orientation isomorphism:

1X2
∼= ωX2 [−2d]

This enables the following identifications of (graded) Hom spaces:

Hom∗(f!1, g∗1) ∼= Hom∗(g̃∗1, f̃ !1)

∼= Hom∗(1, f !ωX2
[−2d])

∼= Hom∗(1, ωX1×Y X2
[−2d])

:= HBM
2d−∗(X1 ×Y X2)

This translates morphisms between these pushforwards to the (Borel-Moore)
homology of the fibre product, which is more accessible to geometric techniques.
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We may restrict both sides of this using j∗, leading to the question of whether
this isomorphism localises well:

Hom(f! , g∗ ) Hom(g̃∗ , f̃ ! )

Hom(j∗f! , j
∗g∗ ) Hom(ĵ∗g̃∗ , ĵ∗f̃ ! )

Hom(fU !j
∗ , gU ∗j

′∗ ) Hom(g̃∗U j
∗ , f̃ !

U j
′∗ )

τ

≃ ≃

τ

These two paths around this diagram, applied to a morphism f! → g∗ are
encoded as the following string diagrams.

vs

g̃∗U j∗

f̃ !
U
j′∗

g̃∗U j∗

f̃ !
U
j′∗

Let us prove this statement diagrammatically. Our first step is to move the
Hom out of the way, reducing the problem to proving the equality of diagrams
above the black line:

vs

We may now observe that both sides above this line are admissible, and have
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the same matching:

We may now conclude this commutativity from Theorem 3.3.13.
For completeness, we may also prove it using our local moves as follows:

== = =

These local moves then translate to the following commutative diagram (drop-
ping adornments), with each region given by a local move, or naturality:

g∗j∗f !g∗ g∗j∗g∗f
!

g∗f !f!j
∗f !g∗ g∗j∗f !f!f

!g∗ j∗g∗g∗f
!

g∗f !j∗f!f
!g∗ g∗j∗f !g∗ g∗g∗j

∗f ! j∗f !

g∗f !j∗g∗ g∗f !g∗j
∗ g∗g∗f

!j∗ f !j∗

Example 3.3.25 (A monoidal example). Our second example is with a non-
admissible coherence problem, involving monoidality and the projection for-
mula.

Consider a pullback square, where f and f̃ are proper:

X ′ X

Y ′ Y

g̃

f̃ f

g

We will construct our coherence problem from this, but it will go slightly beyond
our axiomatisation, using an external tensor product. In such a six functor
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formalism, the monoidal structure ⊗ is given by pullback along the diagonal of
an external tensor product ⊠:

F ⊗ G := ∆∗(F ⊠ G )

For any map f : X → Y , we have a pullback square:

X X × Y

Y Y × Y

Id×f◦∆

f f×Id

∆

The associated base change map for this square then gives the projection formula
morphism, which is an isomorphism when f is proper:

A⊗ f∗B → f∗(f∗A⊗B)

Similarly, the composition isomorphism along the commutative (non-pullback)
square

Z Z × Z

Y Y × Y

∆

g g×g

∆

gives the monoidality of g∗:

g∗(A⊗B) ∼= g∗(A) ⊗ g∗(B)

We will now describe a coherence problem involving these, outside the context
of admissible diagrams. Our example is the commutativity of the following:

g∗A⊗ f̃!g̃
∗B g∗A⊗ f̃∗g̃

∗B

g∗A⊗ g∗f!B f̃∗(f̃∗g∗A⊗ g̃∗B)

g∗(A⊗ f!B) f̃∗(g̃∗f∗A⊗ g̃∗B)

g∗(A⊗ f∗B) f̃∗g̃
∗(f∗A⊗B)

g∗f∗(f∗A⊗B)

To understand this, our first task is to describe the indexing diagram D for
this coherence problem. For this, we enlarge our diagram to include the squares
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needed for monoidality and the projection formulae:

W ×W X ×X

W X

Z ×W Y ×X

Z Y

Z × Z Y × Y

f̃×Id

g̃×g̃

f×Idg̃

f̃

(f̃×Id)◦∆

∆

f

(f×Id)◦∆

∆

Id×f̃

g×g̃

Id×f
g

∆

∆

g×g

Note that though the four vertical faces of the cube are pullbacks, we are using
monoidality for non-pullback squares, so our coherence problem is not admissi-
ble.

Our coherence is given by the following diagram applied to A⊠B:

∆∗(Id×f̃)!(g × g̃)∗ ∆∗(Id×f̃)∗(g × g̃)∗ f̃∗(f̃ × Id ◦∆)∗(g × g̃)∗

∆∗(g × g)∗(Id×f)! f̃∗∆∗(f̃ × Id)∗(g × g̃)∗

g∗∆∗(Id×f)! f̃∆∗(g̃ × g̃)∗(f × Id)∗

g∗∆∗(Id×f)∗ f̃∗g̃
∗∆∗(f × Id)∗

g∗f∗(f × Id ◦∆)∗ g∗f∗∆∗(f × Id)∗

Now we may depict our two options diagrammatically, where the circle de-
notes the composition isomorphisms for ((f̃ × Id) ◦ ∆)∗:

=
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Remark 3.3.26. Although the translation to diagrammatics is fairly involved, it
is straightforward, not needing any creative input. We just needed to translate
the definitions of our coherence problem into a diagram and interpret this within
our diagrammatics.

We may then attempt to resolve this coherence diagrammatically as follows:

= = =

Since not all relevant squares are pullbacks in our diagram, we need to check
that these local moves are still valid.

Our first move is sliding a factorisation past a crossing. This is a stan-
dard pseudofunctor compatibility, and we do not need any pullbacks for it, see
Proposition 3.4.12 for a discussion of this compatibility.

Our second local move is a braid move with all strands the same colour,
which holds in any cube (see the proof of Theorem 3.4.31 and the following
remark).

Our final move is sliding a colour change over a crossing, and in our situation
this occurs in a pullback square. This therefore occurs within an admissible di-
agram, and the equality holds. Putting these together yields the commutativity
of the original diagram.

To round out this proof, we may translate these local moves into a commu-
tative diagram, with regions corresponding to our local moves and naturality:

∆∗(Id×f̃)!(g × g̃)∗ ∆∗(Id×f̃)∗(g × g̃)∗ f̃∗(f̃ × Id ◦∆)∗(g × g̃)∗

∆∗(g × g)∗(Id×f)! ∆∗(g × g)∗(Id×f)∗ f̃∗g̃
∗(f × Id ◦∆)∗ f̃∗∆∗(f̃ × Id)∗(g × g̃)∗

g∗∆∗(Id×f)! f̃∆∗(g̃ × g̃)∗(f × Id)∗

g∗∆∗(Id×f)∗ f̃∗g̃
∗∆∗(f × Id)∗

g∗f∗(f × Id ◦∆)∗ g∗f∗∆∗(f × Id)∗
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3.4 The proofs

In this technical section we will prove the results asserted in the prior user guide.
The structure of this section is as follows.

First, we will discuss our admissible diagram restrictions (Definition 3.4.2),
and some subtleties of the translation into diagrammatics, namely, the type
checks of Example 3.4.4. We will then introduce Verdier duality in Definition
3.4.3, a formal duality on our six functorial data which cuts down the number
of commutativities we need to prove.

With these preliminaries, we will begin by constructing all of the natural
transformations in ∗ from our initial data. In the course of these constructions,
we will verify various local diagrammatic moves and consistencies. We first
construct the isomorphism j∗ → j! for j an open immersion (see Definition
3.4.7), and the !−∗ base change maps (see Definition 3.4.18). In this part we also
prove various compatibilities of these constructions, all using our axiomatisation
of the six functor formalism.

Starting from Subsection 3.4.8, we prove our fundamental local moves. The
proofs of these compatibilities are mostly tautological from our work so far, and
consist of leveraging the large amount of symmetry present. The proofs in this
section form a framework for how to prove the local moves in greater generality.

These fundamental local moves form one half of the proof of the main The-
orem 3.6.1. The other half consists of a purely string diagrammatic analysis of
Brauer diagrams, treated independently in Section 3.5.

Throughout the following section, we will be working primarily in the context
of admissible diagrams, after introducing them in Definition 3.4.2. This enables
us to work diagrammatically throughout, and we will assume familiarity with
diagrammatic arguments. We will also omit labels and morphism names when
unambiguous.

3.4.1 Admissible coherence problems

In this section, we describe conditions on coherence problems, that ensure our
diagrams are well behaved. We call these admissibility restrictions. They should
be viewed as axiomatising the best case scenario of a coherence problem. Ex-
ample 3.3.10 shows that the question of whether squares are pullbacks must be
taken into consideration for coherence questions. We will impose this pullback
condition for our admissible problems.

Definition 3.4.1. An admissible diagram is a diagram in C , with distinguished
commutative squares, along with an indication on each arrow whether it is
proper and/or an open immersion. Precisely, these squares are a collection of
functors S → D, where D is the indexing category of the diagram, and S is the
poset of subsets of a two element set.

This data then needs to satisfy the following properties:

1. If a square is distinguished, then it is a pullback in C .
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2. Any two arrows are contained in at most one distinguished square.

3. If an edge of a distinguished square is proper and/or an open immersion,
then its opposite edge is also proper and/or an open immersion.

4. If three distinguished squares contain a common vertex and pairwise share
edges in the combinatorial arrangement of faces in the corner of a cube,
then there exists a cube containing these three faces, with all faces distin-
guished.

The motivating example of an admissible diagram is a pullback n-cube, the
diagram given by taking all pullbacks of n maps to a given target in C . These
axioms are designed to maximise the utility of the diagrammatics, isolating the
desirable properties of this example.

This class of diagrams gives our definition of an admissible natural transfor-
mation.

Definition 3.4.2 (Admissible coherence problems). Fix an admissible dia-
gram in C , and consider two compositions of functors built from our functors
f∗, f

∗, f!, f
! for f any morphism in the admissible diagram.

A natural transformation between these two functors is admissible if it is
built out of our list of generating maps ∗, subject to the following constraints:

1. We only have base change, composition isomorphisms and their inverses
on distinguished squares. Diagrammatically, all crossings are associated
to pullbacks.

2. Whenever we have a formal inverse crossing, one of the strands involved
is proper or an open immersion, ensuring this inverse exists for formal
reasons.

3. We only have the inverse f∗ → f! for f proper, and j∗ → j! and its inverse
only for j an open immersion.

4. In the string diagram associated to the natural transformation, none of
the strings have self crossings.

An admissible coherence problem is a pair of admissible natural transforma-
tions with the same source and target, drawn from the same admissible diagram
D in C .

These restrictions serve to streamline the translation to diagrammatics. For
instance, the requirement of two edges being in at most one distinguished pull-
back square lets us recover a natural transformation from its start point and
its string diagram. These conditions also allow the removal of labels for visual
clarity, without introducing ambiguity. Finally, the requirement that opposite
edges of a square are both proper or open immersions lets us describe a strand
in the string diagram as proper or an open immersion.
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Remark 3.4.3. Our fourth requirement of noncrossing strands is for simplicity.
To remove this hypothesis, one needs some additional Reidemeister one uncross-
ing moves. Our choice ensuring all crossings are associated to pullbacks implies
that this self intersection case is degenerate, only occurring with in presence of
isomorphisms.

3.4.2 Type checks

As our translation to diagrammatics is not perfect, there are some checks which
need to be verified to translate diagrammatic manipulations back to the cate-
gorical setup. We refer to these as type checks. Our conditions of Definition
3.4.2 are designed to minimise the number of these checks, but some remain.

Our diagrammatic encoding process works by taking an admissible natural
transformation and depicting it as a string diagram. We then want to modify
the string diagram by local moves, and be assured that there are correspond-
ing admissible natural transformations. We refer to this process as the type
check associated to the local move, and we say that a local move is valid for a
given diagram if it passes the associated type check. This phenomena is best
understood through an example:

Example 3.4.4 (Type check). Fix a pullback square

X ′ X

Y ′ Y

g̃

f̃ f

g

and consider the natural transformation:

g!f! → g!f∗ → f∗g
!

Diagrammatically this is:

Consulting our local moves of Proposition 3.4.27, we may want to slide this
colour change to the left, to give the following diagram:

For this to have a valid categorical interpretation, we need this string dia-
gram to be interpretable, which is not guaranteed a priori. This is because the
natural transformation

g!f! → f!g
!

goes the wrong way. For this to be valid, we need either f to be proper, or g to
be an open immersion. Checking that one of the strands is proper or an open
immersion constitutes a type check.
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In the following more complicated setting however, this local move would be
valid:

=⇒

In this case, we see that our upper right strand is an open immersion (by
considering the bottom left of the diagram), so this formal inverse crossing is
valid.

Our admissibility condition lets us isolate the settings where our type checks
may fail. This occurs are when a local move results in a formal inverse crossing.
These potentially troublesome crossings are the following:

Remark 3.4.5. One may easily tell if a crossing is a formal inverse; the formal
inverse crossings are those without any mates.

To summarise, given an admissible coherence problem, we encode it dia-
grammatically, then try to manipulate this string diagram. To ensure our local
moves are valid, we may need to do a type check, referring back to the properties
of the diagram D. Some of our local moves incorporate type checks, which allow
for their use without consultation of the underlying diagram D. For instance,
sliding colour changes right over crossings always passes these type checks, see
Proposition 3.4.29.

3.4.3 Formal Verdier duality

In this section we will describe the formal duality present in our axiomatisation
of the six functor formalism. We will utilise this duality in all of our proofs,
to halve the number of cases we need to check. Recall that in our context, a
six functor formalism is two pseudofunctors f∗, f! and a natural transformation
τ between them. In the bounded geometric setting, there is a contravariant
equivalence D exchanging the roles of ! and ∗ [61]. This geometric duality has a
formal analogue in our setup; by taking the opposite category, we may exchange
the roles of ! and ∗:

(f∗, f!, S) ⇔ (f!, f∗, S
op)
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This enables the dualisation of proofs in the six functor formalism, interpreting
them as holding for the dualised statements within our original six functor
formalism. This is analogous to the usual duality of definitions in category
theory.

This duality has a simple interpretation diagrammatically.

Proposition 3.4.6. The duality on our elementary diagrammatic pieces is
given by:

↔ ↔

↔ ↔

↔

↔ ↔

↔

As we construct new morphisms, with new diagrams built from these ele-
mentary pieces, we will also have the Verdier dual constructions. We will prove
that these dualised constructions are consistent with our string diagrammatic
descriptions. The effect of this duality on our constructed natural transforma-
tions is the following:

↔

↔

↔

↔

↔

Checking that constructions are compatible with duality can carry content. For
example, to define the base change map

g∗f! → f!g
∗

of Definition 3.4.18, we factorise the map g. The Verdier dual of this construc-
tion then gives a construction of the base change

f∗g
! → g!f∗

by factorising f . This second base change may also be given by taking mates of
the first, and the equality of these two constructions is checked in Proposition
3.4.24.
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On a general string diagram, formal Verdier duality acts by flipping it verti-
cally, changing the colour of strands, and reversing their direction. Throughout
this section we will use this duality to halve our proofs, as formally dual state-
ments have formally dual proofs.

3.4.4 Open immersions

In this section we will collect the properties of open immersions needed going
forward. This entails constructing the isomorphism τj : j∗ → j!, verifying that
this is a morphism of pseudofunctors, and checking that this construction is
formally Verdier self dual. We will also show that our j∗ → j! morphism agrees
with the corresponding morphism in the Mann-Scholze setup [90].

Recall that in our axiomatisation, the class of open immersions is closed
under composition and base change, and that the following morphisms are iso-
morphisms:

j∗j∗ → Id Id → j!j! j∗j!j
! → j∗

j!j! →j!j∗ j∗j! → j∗j∗ j! → j!j∗j
∗

These properties let us construct an isomorphism τj : j∗ → j!.

Definition 3.4.7. For j an open immersion, we define the natural transforma-
tion τj : j∗ → j! such that the following diagram commutes:

j∗ j!

j!j!j
∗ j!j∗j

∗

≃ ≃

≃

We express this morphism diagrammatically as a colour change

j∗ → j!

and this gives our defining relation diagrammatically as:

=

The following proposition provides an alternate characterisation of this map.

Proposition 3.4.8. This morphism may be characterised as the unique natural
transformation j∗ → j! such that the following diagram commutes:
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j!j
! Id

j∗j
∗

ϵ

cjτj
η

Diagrammatically, this is:

=

Proof. We start from the defining diagrammatic relation of j∗ → j!:

=

Applying the operations of adjunction and composition with the inverse τ−1
j

yields:

=

This then immediately simplifies to the desired diagram. As taking mates and
composing with isomorphisms are invertible operations, this commutativity is
equivalent to its definition. We thus conclude that this commutativity charac-
terises the map.

Proposition 3.4.9. The natural isomorphism j∗ → j! is a morphism of pseud-
ofunctors, when restricted to the subcategory of open immersions.

Proof. The property of being a morphism of pseudofunctors is that this map is
compatible with composition, so take a factorisation of open immersions:

j := j2 ◦ j1

This compatibility then follows from the commutativity of the following
diagram, for which all arrows are isomorphisms:
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j∗ j∗1j
∗
2 j!1j

∗
2 j!1j

!
2 j!

j!1j1!j
∗
1j

∗
2 j!1j1∗j

∗
1j

∗
2 j!1j

!
2j2!j

∗
2 j!1j

!
2j2∗j

∗
2

j!j!j
∗ j!1j

!
2j2!j1!j

∗
1j

∗
2 j!1j

!
2j2!j1∗j

∗
1j

∗
2 j!1j

!
2j2!j1∗j

∗
1j

∗
2 j!1j

!
2j2∗j1∗j

∗
1j

∗
2 j!j∗j

∗

Each compatibility in this diagram is then simple to check by naturality and
recalling the definitions.

Next, we need to check that our definition of this natural transformation is
formally Verdier self dual.

Proposition 3.4.10. The natural isomorphism j∗ → j! is formally Verdier self
dual. Precisely, the dual construction

j∗j!j
! j∗j∗j

!

j∗ j!

yields the same morphism. This is equivalent to the commutativity of the fol-
lowing diagram:

j∗j!j
! j∗ j!j!j

∗

j∗j∗j
! j! j!j∗j

∗

Proof. Diagrammatically, this last commutativity is the following:

=
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By taking mates, this is equivalent to the following:

=

Precomposition with the isomorphism j! → j!j
!j! → j!j

!j∗ then completes the
proof by inspection of the following diagram.

=

Finally, we need to check that our definition of the j∗ → j! isomorphism
for open immersions agrees with the isomorphism that arises in nature. In a
sheaf theoretic context, it is simple to check the commutativity of Proposition
3.4.8 directly from the definitions. In Mann’s formalism, the ! → ∗ morphisms
are induced by isomorphisms for the relative diagonal, so this is something that
must be checked.

Proposition 3.4.11. In any six functor formalism in the sense of Mann-
Scholze [?], the following diagram commutes, where j∗ → j! is the isomorphism
for open immersions in this context:

j∗j!j
! j∗j∗j

!

j∗ j!

In particular, our morphism j∗ → j! agrees with their construction.

Proof. First, note that by Proposition 3.4.8, this compatibility is equivalent to
the commutativity of the following diagram:

j!j
! Id

j∗j
∗

ϵ

cjτj
η

We will assume familiarity with the constructions of Mann’s six functor
formalism. This differs from ours in that the ! − ∗ base change is axiomatic.
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Letting j : X → Y be our open immersion, the ! − ∗ maps are defined with
respect to the following diagram:

X

X ×Y X X

X Y

∆j

p1

p2

j

j

The morphisms j! → j∗ and j! → j∗ are defined by:

j! → j∗j
∗j! → j∗p1!p2

∗ → j∗p1!∆j∗∆∗
jp2

∗ → j∗p1!∆j !∆
∗
jp2

∗ → j∗(p1∆j)!(p2∆j)
∗ → j∗

j! → j!j∗j
∗ → p2∗p1

!j∗ → p2∗∆j∗∆∗
jp1

!j∗ → p2∗∆j∗∆!
jp1

!j∗ → (p2∆j)∗(p1∆j)
!j∗ → j∗

Here the isomorphisms ∆!
j → ∆∗

j and ∆j ! → ∆j∗ are taken to be primitive.
Translating these into diagrammatics, it remains to show the following equality
of diagrams, using • to denote the various isomorphisms Id∗ → Id.

=

To check this, we first note that the following diagram commutes:

∆j∗∆∗
jp2

∗p2∗∆j∗∆∗
j ∆j∗(p2∆j)

∗(p2∆j)∗∆∗
j

p2
∗p2∗ Id ∆j∗∆∗

j

This is given diagrammatically as:

=

We also need to check the commutativity of

p1!∆j∗∆j
∗p1

! p1!∆j !∆j
!p1

! (p1∆j)!(p1∆j)
!

p1!p1
! Id
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with diagrammatic description:

=

The first of these diagrams commutes for a general pseudofunctor, and the
second holds since ∆j is an isomorphism, in view of the construction of the
! → ∗ morphisms for isomorphisms. With these preliminaries, we may finish the
proof diagrammatically:

=

= ==

=

In this proof the fourth and fifth equalities follow from axiomatic ! − ∗ base
change compatibilities.

3.4.5 Single colour compatibilities

In this section we will recall some basic compatibilities which only use ∗ or
! functors. These mono-coloured compatibilities are standard, and simple to
prove diagrammatically. First are our standard topological simplifications, for
which we depict the ∗ versions, the red ! version being the dual.

Proposition 3.4.12. The following local moves hold in coherence problems with
a single pseudofunctor and its adjoint:
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= = = =

= =

=

=

= =

Proof. The first two are triangle identities, the double crossing moves are by
definition, and the twists and half twist are by definition.

Remark 3.4.13. These basic compatibilities do not require pullback squares, as
they are all true essentially by definition.

In a factorised pullback square, we also have factorisation compatibilities,
where we depict the composition isomorphism as a circle. Some diagrammatic
examples of this are shown below:

=

= =

These compatibilities (and their unpictured variants) are all immediate from
expanding pseudofunctoriality of f∗, using the definition of f∗ as its left adjoint
pseudofunctor 6. As we are interested in the interplay of two such pseudofunc-
tors, we leave these simple monocoloured coherences to the reader. The only
potential subtlety here is for the inverse base change crossing, for which one
requires the requisite inverses in the factorisation to exist. In what follows,
we will use the basic compatibilities of this section freely and without further
comment.

6See for example the proof of 3.4.9
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3.4.6 Colour changes and monocoloured crossings

In this section we will collect some of the intermediate coherences involving our
colour change morphisms and crossings. This section is adapted to our choice
of axiomatisation of a six functor formalism, and forms the groundwork needed
to construct a well behaved ! − ∗ base change map.

Our first colour change compatibilities are direct consequences of pseduo-
functoriality.

Proposition 3.4.14. In a coherence problem, the following moves hold:

=

=

=

=

As these moves encode the ! − ∗ maps being morphisms of pseudofunctors, they
do not require admissibility of the associated diagram.

Proof. These string diagrams follow from preservation of pseudofunctoriality,
which is axiomatic for f! → f∗, and is given by Proposition 3.4.9 for open
immersions.

Proposition 3.4.15. In any admissible coherence problem, we have the follow-
ing simplifying local moves:

= Id

= =

= =

The pullback condition of admissibility is crucial for this Proposition; this
uncrossing gives the shape of our Example 3.3.10.

Proof. We will first consider this bubble case, noting that type checks imply this
morphism is an open immersion. We may then verify triviality of this bubble
after composition with the isomorphism Id → j!j! → j!j∗. This gives the result
by inspection of the following diagram, where this first equality is the defining
property of open immersions:
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= =

For these uncrossings, the first of them implies the rest by pre and post
composition with isomorphisms. To prove the first, we take mates of the open
immersion strand j∗, and may precompose with the isomorphism f! → f!j

!j! →
f!j

!j∗ to reduce the claim to:

= =

To show this, we have the following proof:

= = ==

Remark 3.4.16. The other bubble

is not in general the identity map. By type checks, it is associated to a proper
open immersion, and represents the endomorphism:

Id → j∗j
∗ → j!j

! → Id

Proposition 3.4.8 implies that this bubble is idempotent. Geometrically, this
may be viewed as the projection onto sheaves supported on a clopen subset of
the ambient space.

We may generalise Proposition 3.4.14 to all adjacent colour changes and
monocoloured crossings.
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Corollary 3.4.17. In an admissible natural transformation, pairs of adjacent
colour changes may cross monocoloured crossings, in any orientation. This also
uniformly passes type checks; if one diagram is valid, then the other is also.

Proof. We shall first check this claim of type checks. If both strands change
colour, then the only case where a type check could fail is when both colour
changes are the non-invertible transformation f! → f∗. This case may only
occur when both strands are down, in the following configuration:

=

In this circumstance we see directly that both sides are valid.
To prove the general claim, note we may conjugate by our invertible colour

changes. This reduces the claim to proving the following cases:

=

= =

=

The top row then follows from Proposition 3.4.14, the bottom row follows from
the Proposition 3.4.15.

Before pressing on, we should note many local moves may be deduced from
what we have developed thus far. The most useful of these are variants of the
Reidemeister two uncrossing moves, such as:

==

We will use these moves repeatedly in what follows.

3.4.7 Base change, the multicoloured crossing

In this section we construct the crucial !−∗ base change map, diagrammatically
given by a multicoloured crossing. We construct our primitive map

g∗f! → f!g
∗

using open/proper factorisations. With this map as primitive, we define the
other variants of this base change. We check that this natural isomorphism
respects factorisations, and behaves correctly with respect to formal Verdier
duality.
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Definition 3.4.18. We define the ! − ∗ base change morphism

g∗f! → f!g
∗

by first choosing a factorisation

g = p ◦ j

of g into an open immersion followed by a proper map. Using this, we define
the base change by the formula

g∗f! → j∗p∗f! → j∗f!p
∗ → f!j

∗p∗ → f!g
∗

where p∗f! → f!p∗ for proper p is

p∗f! → p∗f!p∗p
∗ → p∗f!p!p

∗ → p∗p!f!p
∗ → p∗p∗f!p

∗ → f!p
∗

and j∗f! → f!j
∗ for j an open immersion is:

j∗f! → j!f! → f!j
! → f!j

∗

As a string diagram, this is:

:=

g∗f! → f!g
∗

g∗ f!

g∗f!

We will show that this construction is independent of the factorisation cho-
sen, but for the next lemma, we will use a fixed factorisation of g.

Lemma 3.4.19. For any chosen factorisation of g, and factorised pullback
square of f given by f = f1 ◦ f2 the following diagram commutes:

g∗f1!f2! f1!g
∗f2! f1!f2!g

∗

g∗f! f!g
∗

Diagrammatically, this is:

=
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Proof. A diagrammatic proof of this statement is as follows:

=

=

=

=

=

With these preliminaries, we now prove that our ! − ∗ base change map is
well defined.

Proposition 3.4.20. The construction of the base change morphism

g∗f! → f!g
∗

is independent of the factorisation of g.

Proof. We will use the crucial fact that for any two factorisations

g = p1 ◦ j1 = p2 ◦ j2
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there exists a common refining factorisation g = s ◦ j3. Precisely, this means
there exist proper maps q1, q2 and an open immersion j3 such that:

j1 = q1 ◦ j3
j2 = q2 ◦ j3

p1 ◦ q1 = p2 ◦ q2 := s

g = s ◦ j3

To see this refinement, in the diagram below for the pullback of g : X → Y
to X ×Y X, consider the relative diagonal ∆g, and the induced map k. By
factorising k into j3 ◦ r, we set qi = p′i ◦ r, giving the desired factorisation.

X

X ×Y X X

X Y

∆g
kj3

r

j2

g

p′
2

p′
1

p2

j1

g

p1

By symmetry, it suffices to show that this g = s ◦ j3 factorisation and g =
p1◦j1 give the same morphism. This compatibility is that the following diagram
commutes:

g∗f! j∗1p
∗
1f! j∗1f!p

∗
1 f!j

∗
1p

∗
1

j∗3q
∗
1p

∗
1f! j∗3q

∗
1f!p

∗
1 j∗3f!q

∗
1p

∗
1 f!j

∗
3q

∗
1p

∗
1

j∗3 (p1q1)∗f! j∗3f!(p1q1)∗ f!j
∗
3 (p1q1)∗

f!g
∗

The commutativity of the above squares is clear, and the lower left rectangle
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commutes by the following:

= =

It remains to prove the top right rectangle. After noting that the p∗1 is not
relevant, we need to prove the following equality:

=

f! j∗3 q∗1

j∗1 f!

f! j∗3 q
∗
1

j∗1 f!

After applying isomorphisms and units, this is the following:

=

j!1 q1! f! j!1 q1! f!

j!3 f! j!3 f!

Further, note that by naturality of factorisation (Proposition 3.4.12), we may
verify the claim separately in the cases where our second strand f is proper or
an open immersion. The proof when f is proper is as follows:
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= ==

= ===

Note that these local moves only involve what we have developed so far. To
conclude, when f is an open immersion, the proof is as follows:
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=

= = = ==

= =

Now that we have one well defined ! − ∗ base change map, we define the
other ! − ∗ base change maps by taking mates and inversion.

Definition 3.4.21. We define the other basic multicoloured crossings for a
pullback square as follows:

=

=

=

=

=−1

−1
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This construction has privileged the

g∗f! → f!g
∗

base change as a primitive construction and derived the others. There is nothing
canonical about this choice, and each of the other !−∗ base change maps could
have been used as a primitive choice instead. In particular, each option has a
constructive definition via choosing a factorisation of one of the strands, and
this can be shown to be independent of the choice. For example, the inverse of
g∗f! → f!g

∗ is given by the following expression, using a factorisation of g:

=

We would like to contrast the constructive nature of these maps with the fol-
lowing formal inverse construction.

Definition 3.4.22. We have the following formal inverse crossings, the first
requiring one of the strands to be proper, and the second requiring one of the
strands to be an open immersion:

:=

:=

−1

−1

Remark 3.4.23. As a general rule, in this framework, the maps which are defined
constructively have potential mates, whereas the formal inverses do not.

Before we proceed, we need to check that this definition is consistent with
formal Verdier duality. This proposition carries content, and is equivalent to
the fact factorisation of the other strand in Definition 3.4.18 obtains the same
morphism.
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Proposition 3.4.24. The construction of the morphism

f∗g
! → g!f∗

as the mate of
g∗f! → f!g

∗

agrees with the formal dualisation of Definition 3.4.18. This is stated diagram-
matically in the first equality below, the second being a simplification:

= =

Proof. First, let us note that the rightmost diagram has the following diagram-
matic presentation of its inverse, the enjoyable verification of which we leave to
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the reader:

=
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By composing with this inverse, we reduce our check to the following sim-
plification:

= = =

=

=

= =

=

=
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From this, we may deduce the following rotation compatibility for multicol-
ored crossings.

Corollary 3.4.25. The following local moves hold for multicoloured crossing in
an admissible diagram:

=

=

=

=

Our final compatibility of this section is not strictly necessary for our co-
herence theorem, as we do not incorporate factorisations, but is worth pointing
out. This is the general version of Lemma 3.4.19, that multicoloured crossings
are compatible with factorisations. As we will not be using this proposition in
what follows, we leave the individual cases to the reader.

Corollary 3.4.26. We may pass splittings across multicoloured crossings. For
a factorised pullback square

g′
1

f ′

g′

g′
2

f ′′ f
g1

g

g2

our !−∗ base change maps respect this factorisation. For instance, the following
diagram commutes:

f ′
∗g

!
1g

!
2 g′!1f

′′
∗ g

!
2 g′!1 g

′!
2f∗

f ′
∗g

! g′!f∗

Proof. Diagrammatically, this is sliding a splitting of a strand across a multi-
coloured crossing. In view of Proposition 3.4.24, we may factorise the other
strand, and prove the result analogously to Lemma 3.4.19.
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3.4.8 Fundamental local moves I; colour changes and cross-
ings

In this section we will prove the first class of our fundamental coherences, those
involving colour changes and crossings. These comprise one half of our primitive
compatibilities in the six functor formalism.

These kinds coherences encode the compatibility of our ! to ∗ maps, base
change, and composition isomorphisms. For example, the equality of diagrams

=

encodes the commutativity of:

f!g
∗ g∗f!

f∗g
∗ g∗f∗

Observe that since this coherence problem involved a formal inverse map

f∗g
∗ → g∗f∗

one of the maps must be proper or an open immersion for this to be defined.
Our first class of fundamental local moves is the general version of this

compatibility, sliding these colour change morphisms over crossings.

Proposition 3.4.27 (Colour changes slide over crossings I). In an admissible
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natural transformation, the following local moves hold, when both sides are valid.

= =

= == =

= =

= = = =

== = =

f∗g! → g∗f
∗

f !g! → g∗f
!

f∗g∗ → g!f
∗

j∗f! → f!j
! j!f! → f!j

∗f!g
∗ → g∗f∗ f∗g

∗ → g∗f!

f!j
! → j∗f! f!j

∗ → j!f!

f!g
! → g!f∗ f∗g

! → g!f! f∗j
∗ → j!f∗ f∗j

! → j∗f∗

f !g∗ → g!f
! j∗f∗ → f∗j

! j!f∗ → f∗j
∗

Proof. First, observe that the third and fourth rows are the formal Verdier
dual of the first two. This second row involves the formal inverses of the base
change map, and is implied by the equalities of the first row, by composing with
isomorphisms. An example of this is given by:

= ⇐⇒ = ⇐⇒ =

This leaves only the first row to be shown. The first compatibility of this row
has a proof as follows:

= = = = =
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The latter three then follow from the independence of factorisation property of
! − ∗ base change maps, taking one of the morphisms in the factorisation to be
the identity.

We will now check the similar claim for composition isomorphisms and the
mates of the ! − ∗ base change maps.

Proposition 3.4.28 (Colour changes slide over crossings II). In an admissible
natural transformation, the following local moves hold if both sides are valid.

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

j∗f ! → f !j!j!f ! → f !j∗f∗j∗ → j!f∗f∗j! → j∗f∗

f∗g! → g!f!f!g! → g!f∗f∗g∗ → g!f∗f∗g! → g∗f∗

f !j! → j∗f !f !j∗ → j!f !j∗f∗ → f∗j!j!f∗ → f∗j∗

f!g! → g∗f!f!g∗ → g!f!f!g∗ → g∗f∗f!g∗ → g∗f!

Proof. The third and fourth rows are implied by the first two rows, by conju-
gation with isomorphisms. The proof for the first two rows follows from the
previous proposition by taking mates. For example, we may prove the first
equality as follows:

= = =

These equalities hold when we interpret a coherence problem as a string
diagram. If we attempt to use these equalities as local modifications to our
diagrams, we need to pass type checks (see Example 3.4.4) to interpret the string
diagram as a natural transformation. For these local moves, this condition needs
to be checked, but it does not need to be checked when sliding the colour change
to the right.
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Proposition 3.4.29. When a colour change occurs to the left of a crossing, it
always passes the type check to slide it right. Precisely, if we have an admissible
diagram of a crossing, and a colour change that occurs to the left of the crossing,
then the diagram given by sliding this crossing to the right is valid.

Phrased in another way, for any admissible coherence problem with its asso-
ciated string diagram, we may slide colour changes to the right, and be assured
that there is a corresponding admissible natural transformation.

Type checks may be required for sliding colour changes across crossings to
the left. The following cases are those which do not automatically pass these
type checks:

f!g! → g!f∗ f!g
∗ → g∗f∗ f !g! → g∗f

! f∗g! → g∗f∗

Proof. The only crossings for which type checks may fail are our formal inverse
crossings:

From these cases, we may check that the cases of possible colour changes occur-
ing on a rightmost endpoint of a strand are given by:

We may thus note directly that only the invertible colour changes

may occur.
Thus, if we attempt to slide a colour change right and this results in one of

these situations, the colour change was invertible, and we pass the type check.
Now let us consider attempting to slide colour changes to the left over cross-

ings. If a colour change is invertible, then it implies the strand is proper or an
open immersion, so all type checks pass, and the other crossing exists. So it
remains to consider the only colour change which is not invertible, f! → f∗. The
following exhaust the options for sliding this non-invertible colour change left:
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Consideration of these cases then yields our four exceptions.

It is worth unpacking the content of this previous proposition. On a purely
categorical level, it encodes when morphisms being well defined imply other
morphisms are well defined. For example, if the sequence

f!g∗ → f∗g∗ → g∗f∗

occurs in a coherence problem, one may replace it with

f!g∗ → g∗f! → g∗f∗

without needing to check anything, but if

f!g
∗ → g∗f! → g∗f∗

occurs, it may not make sense to replace it with

f!g
∗ → f∗g

∗ 99K g∗f∗

as this dashed arrow requires conditions to exist.
While these observations are individually trivial to check, our goal is to

assemble them for use in a coherence rewriting context. This represents the
upshot of our diagrammatics, the proceeding proposition gives a simple, visual
method of understanding these rewriting rules, just slide colour changes to the
right. This enables global arguments, and forms the visual basis of our larger
strategy for proving coherences, to “slide the colour changes out of the way”.

This strategy leads to our second class of fundamental local moves, those
without ! to ∗ maps, when no colour changes are present.

3.4.9 Fundamental local moves II; monocoloured strands

In this section we will prove the second class of fundamental local moves, those
which do not involve colour changes. These moves do not require type checks,
and so may be interpreted as diagrammatic rules which may always be cate-
gorically interpreted. Together, these fundamental local moves will enable fully
diagrammatic simplification of coherence problems, which opens the door to
resolving coherence problems of arbitrary complexity.

The compatibilities of this section comprise many individual cases, most of
which are immediate from our constructions. Before giving the list of com-
patibilities, we wish to point out that admissibility is not necessarily needed for
many of these local moves, and that the proof is largely an exercise in leveraging
the various symmetries present.

Before stating the main result, we need some language to encode the large
number of individual coherences.
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Definition 3.4.30. Given a string diagram and an admissible diagram, a
coloured orientation of it is a choice of colour and direction for each string in-
volved, such that this follows the rules of our natural transformation encodings.
For example, the string diagram

admits a coloured orientation:

This coloured orientation is valid, as it could be associated to an admissible
coherence problem such as:

f∗ f∗

g! g!

f∗f∗ → f∗f∗g
!g! → f∗g!f∗g! → g!f∗f∗g! → g!g!

This restriction on coloured orientation could also be summarised as blue
cups and caps point right, while red cups and caps point left.
We will prove the following local moves are valid for all coloured orientations of
the strings.

Theorem 3.4.31. In any admissible diagram, for any coloured orientation of
the following diagrams, we have the following local moves, and these uniformly
pass type checks.

=⇒ =⇒

⇔

=⇒

⇔

⇔
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Before giving the proof, let us understand the kinds of coherences dealt with
by this theorem. For example, this theorem entails the commutativity of the
following diagrams:

= =

f∗g!f∗ g!f
∗f∗ h!f∗g

∗ f∗h
!g∗ f∗g

∗h!

f∗f∗g! g! h!g∗f∗ g∗h!f∗ g∗f∗h
!

Note also that type checks are entailed in this theorem. For an admissible
diagram of any of these shapes, with any coloured orientation, the implied one
is also an admissible coloured orientation.

Proof. This proof mainly consists of a symmetry to prove the 64 cases of the
braid move. The other simplifications are easier, so we handle them first. The
first line of simplifications are just the diagrammatic interpretations of the tri-
angle identities for an adjunction. The second line are the half twists:

=

=

To prove these, by the monocoloured assumption, the orientation properties of
a single strand do not change, so we may apply cups and caps to the other side
of the crossing. This reduce the claim to the twist compatibility of all crossings:

=

=

In the case where both colours are the same, this follows at once from the
definitions. In the multicoloured case, this follows from Proposition 3.4.25.

Next, lets deal with the simple uncrossing:

=⇒
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This holds by definition in all cases.
This leaves the last type of monocoloured move, the braid move:

=

The check of this compatibility is significantly more involved, so we will in-
troduce a labelling scheme for the 43 = 64 individual cases. Each possible
coloured orientation of this braid move compatibility is uniquely determined by
the colours (Red/Blue) and direction of the strings (Up/Down), read along the
tops of the strands. We will encode this information as a pair of length three
strings

(ABC,XY Z)

where A, B and C are taken from the set {B,R}, and X, Y and Z are taken from
the set {U,D}. For instance, (BBR,UDU) is the following coloured orientation
of the braid move:

=

This turn encodes the commutativity of the following diagram:

f !g∗h
∗ f !h∗g∗ h∗f !g∗

g∗f
!h∗ g∗h

∗f ! h∗g∗f
!

We will use various symmetries to cut down the number of cases we need to
verify. The symmetries we have at our disposal are:

• Mate symmetry, applying unit and co-units.

• Conjugation symmetry, when a crossing is invertible, we may conjugate
both sides of the equation by it.

• Formal Verdier duality.

Each of our symmetries preserve the form of the braid relation, but change its
coloured orientation. Two examples of this are shown in the uncoloured context

128



below:

= =

=

These symmetries have a simple effect on the coloured orientation of the braid
move, and we list them below. They yield implications between the proofs of
the braid move coherence with different coloured orientations. We will use X
as a placeholder, in our descriptions below.

1. (BXX,DXX) ⇔ (XXB,XXU) (Mateship on B)

2. (RXX,UXX) ⇔ (XXR,XXD) (Mateship on R)

3. (BRX,UDX) ⇔ (RBX,DUX) (Invertible RB crossing)

4. (BRX,DUX) ⇔ (RBX,UDX) (Invertible RB crossing)

5. (XBR,XDU) ⇔ (XRB,XUD) (Invertible RB crossing)

6. (XBR,XUD) ⇔ (XRB,XDU) (Invertible RB crossing)

7. (BRX,DDX) ⇔ (RBX,DDX) (Inverse of RB crossing)

8. (XBR,XDD) ⇔ (XRB,XDD) (Inverse of RB crossing)

9. (BRX,UUX) ⇔ (RBX,UUX) (Inverse of RB crossing)

10. (XBR,XUU) ⇔ (XRB,XUU) (Inverse of RB crossing)

11. (BBX,DUX) ⇔ (BBX,UDX) (Inverse of BB crossing)

12. (XBB,XDU) ⇔ (XBB,XUD) (Inverse of BB crossing)

13. (RRX,UDX) ⇔ (RRX,DUX) (Inverse of RR crossing)

14. (XRR,XUD) ⇔ (XRR,XDU) (Inverse of RR crossing)
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In addition to these, we also have formal Verdier duality. The key property
of this symmetry that we will need is that it changes the three colours of the
strands. From this, it suffices to prove the braid move in the case when at least
two of the strands are blue.

Our first case is when all three strands are blue, the situation of f∗ and f∗.
Our implications between the proofs then entail many implications, which we
depict as labelled edges in the graph below, with edge labelling describing which
symmetry from our list 3.4.9 connects the two proofs.

(BBB,UUU) (BBB,DUU) (BBB,DDU) (BBB,DDD)

(BBB,UDU) (BBB,DUD)

(BBB,UUD) (BBB,UDD)

(1)

(11)

(1)

(12)

(1)

(12) (11)

This shows that under our symmetries, we only need to check the case of
(BBB,UUU):

=

This coherence is a consequence of the pseudofunctoriality of f∗ via the
following commutative diagram:

h∗g∗f∗ h∗f∗g∗ f∗h∗g∗

h∗(g ◦ f)∗ (f ◦ h)∗g∗

(g ◦ h)∗f∗ (f ◦ g ◦ h)∗ f∗(g ◦ h)∗

g∗(f ◦ h)∗ (f ◦ g)∗h∗

g∗h∗f∗ g∗f∗h∗ f∗g∗h∗

Let us now consider the multicoloured case, when two of the strands are blue.
Looking over our symmetry rules, we may observe that for any orientation of
strings with coloured RB, the associated braid move is implied by a braid move
with strings BR. Thus, we may assume our coloured orientation is

(BBR,XY Z)

130



for some orientations X, Y and Z. There are eight options for these directions,
but they are all equivalent under our symmetries, by the implications labelled
in the following diagram:

(BBR,DUU) (BBR,UDU)

(BBR,UUU) (BRB,UUU) (RBB,UUU) (BRB,DUU) (RBB,UDU)

(BBR,DDU)

(BBR,DDD) (BRB,DDU) (BBR,DUD) (BBR,UDD)

(BBR,UUD) (BRB,UDU)

(10)

(9) (8)

(1)

(1) (4)

(1)

(2)

(1)

(10)

(1)

(6)

(6)

These implications show it suffices to prove (BBR,DDU) in the different
coloured strands case. For this case, we use the Verdier dual of the compatibility
of Lemma 3.4.19, from which the proof follows from the commutativity of the
following diagram:

f !g∗h∗ g∗f
!h∗ g∗h∗f

!

f !(g ◦ h)∗ (g ◦ h)∗f
!

f !h∗g∗ h∗f
!g∗ h∗g∗f

!

Remark 3.4.32. The preceding proof is self contained, and the reader may note
that for our symmetry reductions of the braid move, we did not need the setting
of admissible diagrams. Thus, these braid moves are valid in the weaker setting
of a cube where only the multicoloured crossings are required to be pullbacks.

3.4.10 Topological simplifications

In our Theorem 3.4.31, we used unoriented, uncoloured string diagrams as a
method to express the complete list of individual cases. To prove our main
coherence theorem, we want to consider similar such moves on diagrams without
specified colour and orientation.

Precisely, we want to give topological moves on uncoloured, unoriented string
diagrams, such that whenever one arises from an admissible natural transforma-
tion, there exists a compatible coloured orientation of the other string diagram.
This should pass type checks automatically and induce the same natural trans-
formation.

131



This idea may be clarified with an example. If our move is a half twist

=⇒

then one possible coloured orientation with colour changes could be:

To implement this topological local move, we have the following sequence of
local moves, which all uniformly pass type checks:

=⇒ =⇒ =⇒ (3.7)

The strategy of reasoning with these simpler uncoloured, unoriented dia-
grams is how we will prove our main coherence Theorem 3.6.1.

Proposition 3.4.33. For any admissible colouring, orientation, and colour
changes of the following diagrams, we may topologically simplify along the fol-
lowing implications to yield a valid coherence with a corresponding colouring,
orientation, and colour changes.

⇔

⇔

=⇒

=⇒

=⇒

⇔

=⇒ =⇒

Before the proof, let us note that the more complicated uncrossing moves
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are implied by the others:

=⇒ =⇒

We may then see that the only difference between this claim and Theorem
3.4.31 is that the addition of colour changes does not prevent the topological
simplifications.

Proof. The general proof strategy for this proposition is to slide the colour
changes away to the endpoints of the strands, then use our monocoloured local
moves of Theorem 3.4.31, following the example of 3.7.

We will first address the straightening moves. For these, the opposed direc-
tion of cups and caps implies that for any choice of colouring and colour changes,
an even number of colour changes must occur on the strand between the cup
and cap. These may therefore be cancelled (or no colour changes occur), and
we may straighten the strand by the triangle relation.

For the half twists, the ⇒ direction is simple, following the method of equa-
tion 3.7. Given such a half twist, we can slide any colour changes right over the
crossing by Proposition 3.4.29, so all colour changes may be slid to the bound-
ary, leaving a monocoloured half twist. We may then apply our monocoloured
half twist relation of Theorem 3.4.31 to conclude the result.

For the other direction ⇐ in the half twist case, we will attempt to implement
the same strategy. A priori, we cannot slide our colour changes to the boundary
over the crossing. By considering the possible cases however

we see that these troublesome cases of potentially unsatisfiable type checks
cannot occur in the half twist situation. So both directions of this implication
hold.

For our simple uncrossings, we attempt to slide colour changes right across
to boundaries, and invertible colour changes to the left. This leaves the four
potentially troublesome cases:

Direct inspection in these cases shows that the first two may be resolved
by sliding the colour change left and up over the top crossing (which passes
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type checks), then uncrossing by Theorem 3.4.31. Similarly, the latter two may
be uncrossed by sliding the crossing down and left over the lower crossing. As
noted previously, the more complicated uncrossing rules follow from the half
twists and simple uncrossing.

It remains to check the braid move, in both directions. The ⇒ direction
is implied by sliding the colour changes right to the boundary by Proposition
3.4.29 and Theorem 3.4.31.

For the other direction ⇐, we may slide all colour changes off to the boundary
except possibly one colour change on the middle strand. If this colour change
cannot be slid to the boundary (above or below), then we must be in one of the
four coloured orientations:

In each of these cases, we observe the crossing of the first and third strands
is one of our formal inverse crossings. Our admissibility condition then im-
plies that one of these strands is proper or an open immersion. We may then
apply colour changes along this proper/open immersion strand, allowing us to
move the colour change on the middle strand to the boundary, and the braid
implication follows from our monocoloured Theorem 3.4.31.
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3.5 Topological analysis of diagrams

Our goal is to prove the coherence Theorem 3.6.1 by reasoning with uncoloured,
undirected string diagrams. In this section, we will analyse these string dia-
grams, known as Brauer diagrams. We show that they have a normal form
with desirable properties, and that this normal form may be obtained using our
topological simplifications of Theorem 3.4.31. This result forms the basis for
our main theorem 3.6.1, but this section is independent and self contained.

The main result of this section is the following:

Theorem 3.5.1. For any Brauer diagram without self crossings, we may sim-
plify it to a right unimodal normal form by the following topological moves,
along with naturality:

=⇒ =⇒

=⇒ =⇒

=⇒⇔

=⇒ =⇒

This right unimodal normal form has the following desirable properties:

• Any two strands cross at most once.

• Any strands connecting domain to codomain are “right unimodal” in the
sense of Definition 3.5.6.

Remark 3.5.2. From the point of view of our coherence problems, this unimodal-
ity is key. It is this property that allows our colour change morphisms to “slide
right” to the boundary of the diagram.

3.5.1 Brauer diagrams

We will define our formal string diagrams precisely, and fix our language. In
contrast to the previous section, instead of treating string diagrams as a way to
encode natural transformations, here we treat them as an independent combi-
natorial object.
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Definition 3.5.3. A Brauer diagram is a string diagram built out of caps, cups,
and crossings, subject to some conditions. We describe this formally as:

• A number of strands for the domain and codomain of the diagram, the
boundary of our strands.

• A sequence of crossings ×i,i+1, caps ci,i+1, cups ci,i+1, and identities,
where the indices describe the locations of the endpoints.

This sequence must be composable to create a valid string diagram, using the
standard composition law of the Brauer algebra [14]. Some examples of these
generating diagrams are given below:

c3,4c2,3 ×3,4

These diagrams must satisfy two conditions, motivated by our categorical ap-
plications:

1. There are no free loops in the string diagram.

2. Each strand does not cross itself.

An example of a larger Brauer diagram built from these is given below:

×2,3

c4,5

×3,4

×1,2

×6,7

×2,3

×5,6

c3,4

×1,2

c2,3

×2,3

D = ×2,3c2,3 ×1,2 c3,4 ×5,6 ×2,3 ×6,7 ×1,2 ×3,4 c
4,5×2,3

In this section, we will work diagrammatically rather than using this def-
inition of composable sequences of cups, caps and crossings. The translation
between these two descriptions is simple, just record the changes in the Brauer
diagram, interpreted from bottom to top. In the string diagrams of the previous
section, we embraced naturality, allowing multiple changes to happen at a given
height in a string diagram, with naturality ensuring the map is well defined (see
3.2.3).

136



In this section, we will rigidify our diagrams, and require a single change at
each level of our Brauer diagrams. We will view naturality as moves between
these more rigid diagrams. The reason for this is that any Brauer diagram
inherits this height function, and gives a distinguished order on its constituent
cups, caps and crossings. For instance in our example above, the height of the
crossing ×6,7 is 5.

Remark 3.5.4. Our Brauer diagrams can be factorised, and composed if no loops
or self intersections occur. We have opted to avoid loops and self intersections
to be more adapted to our setting of coherence problems, though this is an
unnatural restriction from a purely diagrammatic point of view.

We will need some language to describe these diagrams.

Definition 3.5.5. For a Brauer diagram D, we define its upper and lower
boundary in the natural way. The lower boundary D is its domain, the endpoints
of the strands at the bottom of the diagram. Similarly, the upper boundary of D
is the codomain, the set of upper endpoints. The boundary of D is the disjoint
union of its upper and lower boundary.

The boundary matching of D is the pairing of the boundary induced by
identifying endpoints of strands. We say a strand is inner if it connects the
upper and lower boundary. A strand is capped if both of its endpoints are in
the same boundary.

These boundary sets have a natural total order, with minimal element left-
most.

For example, on the Brauer diagram below we have labelled the upper bound-
ary white, and lower boundary black, and we have shown the associated bound-
ary matching:

We will need the following definition of right unimodality.

Definition 3.5.6. Given a strand S of a Brauer diagram D which has no cups
or caps, we assign a number in {±1} to the crossing of S and another strand
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T . We give the crossing the sign + if S starts at the right, and − if S starts on
the left (always reading upwards).

S S

Positive + Negative -

TT

For a strand without cups or caps, we define S to be right unimodal if its
sequence of crossings, read upwards, is all +’s followed by all −’s:

(+,+, ..,+,−,−, ..−,−)

We say a standard Brauer diagram is right unimodal if all inner strands have
no cups and caps, and are right unimodal.

Right unimodal Not right unimodal

S

S 7→ (−,+)Right unimodal

Remark 3.5.7. Right unimodality is simple diagrammatically, rotate the dia-
gram 90 degrees clockwise, and check if all inner strands go up and then down.

3.5.2 The normal form

In this section we will describe our normal form, and prove some of its basic
properties. We defer the technical proof that any Brauer diagram can be reduced
to this normal form to the next section.

To describe our normal form, we first decompose the associated boundary
matching into three pieces:

• The matching of a subset of the upper boundary.

• The matching of a subset of the lower boundary.

• A bijection between the complements of these subsets.

138



Our normal form respects this decomposition, being a composition of the
normal forms of these boundary matchings and the permutation.

This normal form for the middle permutation is a consequence of the follow-
ing well known lemma [43].

Lemma 3.5.8. Let σi denote the simple transposition of (i, i + 1) in the sym-
metric group Sn, (diagrammatically ×i,i+1). Then any permutation w in Sn

has a unique reduced expression that is a subexpression of the following reduced
expression for the longest element

w0 = (s1s2...sn)(s1s2..sn−1)...(s1s2s3)(s1s2)(s1)

such that in each (s1s2...sk) the subexpression takes the form sisi+1...sk. As an
example of a permutation in this normal form, we have:

σ2σ3σ4σ2σ3σ1σ2 =

Definition 3.5.9. The right unimodal normal form of a permutation w is this
distinguished reduced expression of the previous Lemma.

As expected, this normal form is right unimodal.

Lemma 3.5.10. For a permutation w, this right unimodal normal form is right
unimodal in the sense of Definition 3.5.6.

Proof. A moments reflection shows that in order to build the reduced expression
of w in this normal form, one first identifies the preimage of n, i = w−1(n), then
sends this directly to n, via the cycle

sisi+1...sn = (i, n, n− 1, n− 2, .., i + 1)

One then repeats this for the preimage of n− 1, n− 2, down to 1. The case of
our example is shown below:

σ1σ2 =

σ2σ3σ4

σ2σ3 =

=
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To see that this gives a unimodal presentation of w, note in the step where the
preimage of k is sent to k, this strand has all of its crossings positively signed,
and the other strands at this stage have all crossings negatively signed. Stacking
these is then seen to imply the desired unimodality.

Next we need to define the normal form for the associated partial boundary
matchings in our decomposition 3.5.2. Our building blocks for this are Brauer
diagrams which we call right combs and co-combs.

Definition 3.5.11. A right comb Ci<j between i < j − 1 is a composite of
adjacent crossings, followed by a cap:

Ci<j := cj−1,j ◦ ×j−2,j−1 ◦ ... ◦ ×i+1,i+2 ◦ ×i,i+1

For example:

C2,5 :=

Similarly, a right co-comb is the vertical reflection of a right comb,

Ci<j := ×i,i+1 ◦ ×i−1,i ◦ ... ◦ ×j−2,j−1 ◦ cj−1,j

For example:

C4,8 :=

In the case of j = i + 1, we define Ci<i+1 to be the cap ci,i+1, and Ci,i+1 to
be the cup ci,i+1.

Definition 3.5.12. A right aligned sequence of combs is a Brauer diagram with
factorisation

D = Ck1<l1 ◦ Ck2<l2 ◦ ... ◦ Ckm<lm

where lr > lr+1 − 2 for all r. Similarly, a right aligned sequence of co-combs is
the mirror of this,

D = Ci1<j1 ◦ Ci2<j2 ◦ ... ◦ Cin<jn

with jr − 2 < jr+1 for all r.
An example of a right aligned sequence of combs is given below:
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C3,4 ◦ C4,5 ◦ C3,6 ◦ C1,4 =

With these definitions, we may finally describe our normal form of a Brauer
diagram.

Definition 3.5.13. The normal form of a Brauer diagram D is a factorisation
of D into:

D = C• ◦ Σ ◦ C•

Where Σ is the right unimodal normal form of a permutation, and C• is a right
aligned sequence of combs, and C• is a right aligned sequence of co-combs.
For example, the following Brauer diagram is in normal form:

D

C•

C•

Σ=
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This normal form has many nice properties, with right unimodality the most
important for our purposes.

Lemma 3.5.14. Any Brauer diagram in normal form is right unimodal.

Proof. We need to check that for any inner strand connecting domain and co-
domain, the sequence of signs for its associated crossings is:

(+,+,+...,+,−,−, ...,−)

One may easily check that inner strands in combs have positively signed
crossings, and negatively signed crossings in co-combs. The claim then follows
by right unimodality of the middle permutation in view of Lemma 3.5.10.

The following lemma shows that this normal form is reduced, in the appro-
priate sense.

Lemma 3.5.15. Any Brauer diagram in normal form has every pair of strands
crossing at most once.

Proof. First note that inner strands in combs and co-combs do not cross each
other, and they intersect at most once in the middle permutation, as this per-
mutation is in reduced form. Strands with endpoints in the upper boundary do
not intersect strands with endpoints in the lower boundary, so by symmetry it
suffices to check that two strands with endpoints in the lower boundary cross
at most once. It remains to check that strands cross at most once in a right
aligned sequence of combs. If two such strands crossed, we may assume that one
of our strands connects i and j within a comb Ci<j and that this comb occurs
at the top of our diagram. This implies that the i − j strand intersects one of
the strands T between i and j at a lower stage. But at this lower stage, the ith
strand, the jth strand, and T are all inner, so they do not intersect, as we are
in a right aligned sequence of combs. This shows that any two strands cross at
most once.

This lemma enables us to show that the normal form of a Brauer diagram
is determined entirely by the associated boundary matching.

Proposition 3.5.16. Two Brauer diagrams in normal form with the same
boundary matching are equal.

Proof. Consider two Brauer diagrams in normal form with the same induced
matching. We will show that their respective comb parts, co-comb parts and
middle permutation are equal. First, these middle permutations agree as they
are determined by the matching on the inner strands. Let us now show that
if two right aligned sequences of combs induce the same matching, then they
are equal. In this situation, if they induce the same matching, then there is a
strand S with endpoints i < j in the lower boundary, such that j is minimal
amongst all such strands. By our right aligned assumption, our first comb must
then be Ci<j in both sequences, and we may conclude the result by induction
on the number of combs. The co-comb case follows by symmetry, so the two
Brauer diagrams in normal form are equal.
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3.5.3 Reduction to the normal form

In this section we will prove that any Brauer diagram can be reduced to normal
form using our topological moves.

Theorem 3.5.17. For any Brauer diagram D, we may simplify it to the normal
form of Definition 3.5.13 using the following local moves:

=⇒ =⇒

=⇒ =⇒

=⇒⇔

=⇒ =⇒

The proof of this theorem will occupy us for the remainder of the section. Let
us fix a Brauer diagram D in what follows. The strategy is to define a function
f on the set of Brauer diagrams D′ which may be reached from D by applying
the local moves. The function f will take values in a well ordered set, and we
will analyse a Brauer diagram D′ minimising this function. In particular, any
diagram D′ attaining the minimal value of f is nearly in normal form; it differs
from a normal form by a sequence of braid moves. We may then conclude that
our original Brauer diagram D can be put into normal form.

We will first define the function.

Definition 3.5.18. We define our function f using the following N valued
measurements of a Brauer diagram:

1. The total number of caps and cups.

2. The total number of crossings.

3. The total number of pairs of caps and cups in the wrong height order.
This is the value of A+B+C where these are given as:

A = The number of pairs of caps with {ci−1,i, cj−1,j} with j < i and ci−1,i

below cj−1,j in height.

B = The number of pairs of cups {ci−1,i, cj−1,j} with j < i and with ci−1,i

above cj−1,j in height.
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C = The number of pairs of caps and cups {ci−1,i, c
j−1,j} such that the

height of ci−1,i is greater than cj−1,j .

4. The number of crossings below caps plus the number of crossings above
cups.

5. The sum total of strands to the right of every cap and cup.

6. The number of identity layers, where nothing occurs.

For a diagram D, this data may be assembled into an N6 vector measurement
f(D), and we give N6 the lexicographic total order.

These measurements are designed to be minimised when resembling the nor-
mal form, an idea made precise by the following.

Proposition 3.5.19. Let D′ be a diagram minimising the value of f(D′) amongst
all diagrams that may be reached from D′ by our local moves. Then D′ factorises
as a right aligned sequence of combs, then a reduced expression for a permuta-
tion, followed by a right aligned sequence of co-combs.

This proposition implies Theorem 3.5.17; first we reach a D′ with minimal
value of f(D′) using our local moves, then we may apply braid moves to reach
our desired normal form by Matsumoto’s Theorem [74].

Proof. Our strategy is to find a height maximal cap within D′, and show that
minimisation of f(D′) ensures the diagram below it is a right aligned sequence of
combs. A symmetrical argument shows that above the height minimal cup will
be a right aligned sequence of co-combs, leaving a permutation in the middle.
Our minimisation of the number of crossings then implies this middle permuta-
tion is reduced.

The remainder of this proof is a case analysis of the diagram below a maximal
cap c. Consider the largest subdiagram D′

max<c below this cap c which forms
a right aligned sequence of combs. We will then show that the minimisation of
f(D′) implies that D′

max<c is in fact the whole diagram below our maximal cap
c.

This reduces the claim to a case analysis; we need to show if anything occurs
below D′

max<c, we may use our local moves to reach a diagram D′′ with:

f(D′′) < f(D′)

Our first case distinction is the following:

Case 1. We have no maximal cap.

Case 2. The diagram D′
max<c has its final comb a cap ci,i+1.

Case 3. The diagram D′
max<c has its final comb larger than a cap.
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This first case holds trivially, so we pass to the second case.
Case 2: The diagram D′

max<c has its final comb a cap ci,i+1.
First, note that at each layer of our diagram, some change occurs, by the

minimisation of our sixth coordinate of f . We have three options for what
follows this cap, either a cap, a cup, or a crossing, which we depict below:

or or

If we had a cap, by right aligned maximality, it must be cj,j+1 for j above
i + 1, but then by naturality we may swap these caps to decrease the third
coordinate of f(D′) while preserving the first two, so this case cannot occur.

=⇒

If we had a cup, and this cup did not use the i, i + 1 strands, then by
naturality we may slide it higher, decreasing the third coordinate of f(D′),
keeping the first two coordinates the same, so this cannot occur. The cup
cannot use both of the i, i + 1 strands, as we assumed no loops, and if it uses
one of the i, i+1 strands, then we may use our straightening relation to decrease
the number of total caps and cups, decreasing the first coordinate of f(D′).

=⇒

This exhausts the options for a cup following, so it remains to rule out a
crossing. If we have a crossing, that does not use the i or i + 1 strands, we
may swap these by naturality, decreasing the fourth coordinate, keeping the
first three fixed. This crossing also cannot be the crossing of i and i + 1 by
our no self intersections assumption, so the crossing uses one of i or i + 1.
If our crossing is ×i− 1, i, then this would give a larger comb, contradicting
maximality, and if our crossing is ×i,i+1, then our half cap twist local move
decreases the fifth coordinate of f(D′) while keeping the first four the same, as
shown in the diagram below.

=⇒

This shows no cap, cup or crossing can occur, so this Case 2 cannot occur.
Case 3: The diagram D′

max<c has its final comb larger than a cap.
For notation, let us assume our comb is between the i and jth strands. Then

this case is the following:
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or or

Our next strand is not the identity, so first let us analyse the cap case. By
right aligned maximality, we see any potential cap must occur to the right of the
final comb, then by naturality we may slide it up to reduce our third coordinate
(cap-cap inversions), keeping the first two coordinates the same.

=⇒

Thus, no cap may occur. If we have a cup next, it must intersect the strands
of the comb by naturality in view of the third coordinate of f(D′). If it intersects
the first strand of our comb only, our half twist reduces the number of strands
to the right of the cap (fifth coordinate) and keeps the first four invariant.

=⇒

If the cup intersects the final strand only, then naturality and the straight-
ening relation reduces our first coordinate of f(D′).

146



=⇒ =⇒

By our no self intersection restriction, the cup cannot occur at position
j, j + 1, or i − 1, i, so we need to check the middle positions. In this case,
using naturality and our uncrossing move, we may reduce the total number of
crossings, reducing the second coordinate of f(D′), preserving the first, as the
following picture shows:

=⇒ =⇒

So it remains to treat the case of the crossing. By naturality, and our fourth
coordinate, such a crossing must intersect the strands of the comb. By maxi-
mality, it cannot be the crossing ×j−1,j , and our uncrossing move implies that
it cannot be ×j,j+1, as this would reduce the number of crossings.

=⇒

This crossing also cannot be ×i−1,i by the self intersection clause, and the
crossing ×i,i+1 lets us reduce the fifth coordinate by naturality and half twist:
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=⇒=⇒

This leaves an inner crossing, for which we may use naturality and our braid
relation, followed by naturality again to reduce our fourth coordinate, keeping
the first three invariant.

=⇒=⇒ =⇒

This concludes all of our cases, showing that any minimiser must have its
maximal cap above a sequence of right aligned combs, and by symmetry its
minimal cup is below a sequence of right aligned co-combs. This concludes the
proof.

The above inductive proof can easily be implemented as an algorithm. First,
find a maximal cap, and consider the diagram below it, trying to build a right
aligned sequence of combs. At each step, attempt to reduce the value f(D),
moving down building a right aligned sequence of combs. Do the same for the
minimal cup, and one will end up in a normal form, up to braid ambiguity on
the permutation in the middle. An example of this is given below:
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=⇒ =⇒

=⇒ =⇒

=⇒

=⇒

=⇒
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3.6 Coherence theorems

In this section we will combine our local moves with the topological normal form
of the previous section to prove our coherence theorems. Our main coherence
theorem is the following.

Theorem 3.6.1. Consider an admissible coherence problem in a six functor
formalism. If the two matchings induced by the underlying string diagrams are
equal, then the two natural transformations are equal, and the diagram com-
mutes.

We may interpret this theorem as stating that all admissible coherence di-
agrams commute, unless there is an obvious reason not to, i.e. the matchings
are different.

Proof. Our strategy for this proof is to use our local moves to show that these
two admissible natural transformations are equal. First, by Proposition 3.4.33
and the topological simplification of Theorem 3.5.17, we may replace our admis-
sible coherence problem with another, where both natural transformations have
their associated Brauer diagrams in normal form. Since our natural transforma-
tions induce the same matching, Proposition 3.5.16 implies their normal forms
are equal. Interpreting the string diagrams with colour and orientation, their
only possible difference is the placement of the colour changes. We will then
analyse the potential placements of these colour changes to deduce the theorem.

We will use a running example to illustrate the steps of the proof. So let our
initial coherence problem have associated diagrams given by the following:

vs

Our first step is topologically simplifying both sides to normal form (by Theorem
3.5.17), disregarding where colour changes occur. For instance, this could give
the following in our example:

vs
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The remainder of this proof is to show that any such admissible choices of colour
changes yield the same natural transformation.

First, we note that endpoints of a strand determine the parity of the colour
changes which must occur along it. This is clear for inner strands, and for
capped strands, this follows from orientation considerations.

Next, we want to show that we may always slide colour changes to the
boundary of the diagram. Let us first consider the case of capped strands that
occur in combs and co-combs. We divide any capped strand into left and right
parts, separated by the cap or cup between them. For colour changes occurring
on the right part of a capped strand, our right aligned assumption (see Definition
3.5.12) of the normal form implies the right strand goes directly to the boundary
without crossings any other strands. For colour changes occurring on the left
part of a capped strand, our orientation conditions show that any colour change
must be invertible:

Thus, if any colour change occurs on this left part of the capped strand, it
is invertible, and may be slid to the boundary.

Let us consider now the case of inner strands. Since a Brauer diagram in our
normal form is unimodal (see Definition 3.5.6), by sliding colour changes to the
right, we may slide all colour changes to the boundary of the Brauer diagram.

Coming back to our example, sliding the colour changes to the boundary
would look like the following:

vs

So we may assume both sides of our admissible coherence problem have
all colour changes occurring on the boundary. We may slide invertible colour
changes over any crossings (see Proposition 3.4.29), so without loss of generality,
we may slide all invertible colour changes occurring on strands to the bottom
boundary of the associated Brauer diagrams. If a strand changes colour more
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than once, this colour change is invertible, so we may assume that each strand
changes colour at most once. In our example, this is:

vs

This lets us further reduce the diagrammatic difference between the two
natural transformations solely to the placement of the non-invertible colour
change morphisms f! → f∗, and they are either at the top or bottom boundary
of non-proper strands.

In this form, we may argue directly as follows. Our only non-invertible
colour changes on inner strands may occur at the top boundary. Assuming
our diagrams differ, find the leftmost (from the top) inner strand for which the
location of this colour change differs between the diagrams. Try to slide this
colour change to the bottom boundary, and do so if this is possible. We repeat
this with the next difference between the diagrams until there is a colour change
at the top of the diagram which cannot be slid to the bottom. Attempting to
slide the colour change to the bottom may only fail if we attempt to slide it left,
and we are not able to pass it over a crossing, failing one of the type checks of
Proposition 3.4.29. This situation is locally given by one of the following cases,
labelling our strands of interest S and the obstructing strand T :

or

ST ST
(3.8)

First, we claim that this strand T is also inner. This claim is easily seen by
direct inspection of the normal form, though we also offer the following direct
topological proof. Our inner strand S separates the ambient rectangular region
of our diagram into two components, and our assumption that strands cross at
most once implies that any capped strand T crossing S must have an endpoint
in each component. As we have slid all colour changes to the boundary, we may
ignore them. In this situation, the two cases of 3.8 cannot occur by the coloured
orientation restrictions of cups and caps.

So by type checks, S is not proper, and we may assume our strand T is
inner, and is not an open immersion in the first case, or proper in the second
case. In the first case, since this strand T is not an open immersion, there can
be no admissible diagram with this colour change at the bottom, contradicting
our assumption that the strands differed. In the second case, no colour change
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occurs at the top of T by our left-most assumption on S, so this colour change
also cannot occur at the bottom of the diagram.

Thus, we may reduce our admissible coherence problems to be equal using
our local moves, proving the claim.

There is a special case of this theorem where we can say more. This is the
case of a permutation matching in a pullback n-cube.

Theorem 3.6.2. When the admissible diagram of a coherence problem is a full
pullback n-cube, between any two compositions of functors, there is at most one
admissible natural transformation which has the induced matching given by a
permutation.

To prove this we will need the following simple combinatorial lemma.

Lemma 3.6.3. Let X be a finite set of size n, and let λ be a fixed partition of
n:

λ ⊣ n

Consider the set Xλ of decompositions

X =
∐

Xi

where each Xi is size λi, and each Xi has a specified total order. Then this set
Xλ is a torsor for the symmetric group of permutations of X.

Proof. Consider n slots with bars between slots, such that the gaps are of size
λi. Identifying the slots between the gaps with Xi realises this set Xλ as the
set of total orders on X, which is a torsor for the desired symmetric group.

With this lemma, we may now prove Theorem 3.6.2.

Proof. By our Theorem 3.6.1, we may assume the permutation is in reduced
form, so the natural transformation is built from colour changes and crossings
only. We will group the morphisms in the underlying pullback n-cube into
parallelism classes. Then we extend this to an equivalence on the functors in
the domain of our natural transformation, grouping functors with parallel input
morphisms, e.g. we group f∗, f ′∗, f̃ !, and f !. These parallelism classes extend
to the strings in the diagram. The crucial observation of this proof is that the
strands in the same parallelism class can never cross.

This partition of the strands into parallelism classes decomposes the do-
main and codomain sequences of functors into subsets Xi, each with a total
order inherited from their presentation left to right. Our permutation takes
the decomposition with total order on the domain to the decomposition with
total order on the codomain, since our total order in each parallelism class is
preserved. In view of the combinatorial lemma, there is a unique w in the sym-
metric group which accomplishes this, showing that the matching is unique.
Theorem 3.6.1 then completes the proof.
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89:461–513, 1961.

[12] Walter Borho and Robert MacPherson. Partial resolutions of nilpotent
varieties. In Analysis and topology on singular spaces, II, III (Luminy,
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[25] Pierre Deligne. Théorie de Hodge. II. Inst. Hautes Études Sci. Publ.
Math., (40):5–57, 1971.

155



[26] Pierre Deligne. La conjecture de Weil : I. Publications Mathématiques de
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